Homework Manual

A series of homework problems are listed throughout the course Modeling and Measuring Ultrasonic
Nondestructive Evaluation Systems. Some are taken from the chapters and appendices of the book,
Ultrasonics Nondestructive Evaluation Systems — Models and Measurements, and some are special
problems associated with the course notes. Here are the problem statements as well as solutions.
Where homework problems taken from the book refer to results or figures in the book text | have
tried to include those items with the homework problem statement. There are other problems in the
book whose statements and solutions are not given that you might like to examine.
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M.1 When a wave is incident on an interface at oblique incidence, the angle of the refracted wave is
controlled by Snell's law (see Fig 1). Write a MATLAB function snells_law that takes as its input the
refracted angle (in degrees) and the wave speeds in the two media and returns the required incident
angle (in degrees), i.e. the calling sequence should look like ang_in =snells_law(ang_out, c1, c2)
Take the two media to be water (c1 =1480 m/sec) and steel (c2 = 5900 m/sec). What are
the incident angles for refracted angles of 0, 45, 70, and 90 degrees for this case? What happens if

the incident angle was 15 degrees?

0

Fig. 1
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M.1 Snell's law function

function ang_in =snells_law(ang_out, c1, c2)
angr = (pi/180)*ang_out; <— putangle in radians

ang_in = (180/pi).*asin(c1.*sin(angr)./c2); *——  yse snell's law, put
result in degrees

use of this function for refracted angles of 0, 45, 70, and 90 degrees
>>a=[0 45 70 90];
>> y=snells_law(a, 1480, 5900)

y=

0 10.2170 13.6340 14.5277

For incident angles greater than the last incident angle listed above, no refracted
wave exists. Instead an inhomogeneous wave propagating along the interface is

generated. >< ><
inhomogeneous wave \

Here is a Snell’s law Matlab function that can take the refracted angle and wave speeds and
produce the incident angle. There is another snells_law function (same name,
unfortunately) given in the Matlab downloads (from book 1) that is much more general and
can solve for either the incident angle or refracted angle, depending on the given data. You
might want to rename this function so there is not a conflict. The wave speeds used here
are the compressional (P) wave speeds for water and steel. There is also a shear wave
speed for the steel and a corresponding Snell’s law for the conversion of compressional
waves in the water to shear waves in the steel.



M.2 Write a MATLAB script that generates 200 refracted angles ranging from 0 to 75
degrees and uses the function from problem 1 to generate the corresponding incident
angles. The script should then plot the resulting incident angles versus the refracted
angles.




M.2 Snell's law script

% snells_law_script

ang_out =linspace(0, 75, 200);

ang_in = snells_law( ang_out, 1480, 5900);
plot(ang_out, ang_in)

xlabel('refracted angle")

ylabel('incident angle')

execute script

>> snells_law_script

incident angle

. . . . .
0 10 20 30 40 50 60 70 80
refracted angle

Here is the script which uses the snells_law function of problem M.1 to solve and plot the
incident angle versus refracted angle for a water-steel interface.



A.1 (a). Write a MATLAB function, spectruml, which computes the positive frequency components of a
signal given by

V(f)=aNmexp| 474 (1~ 1) ],

where A is given in terms of the -6 dB bandwidth, bw, as 4=+/In2 /(ﬂbw). Spectrum!1 should return

sampled values of V for a set of sampled frequencies, f (in MHz), and a specified center frequency, fc ,
(in MHz), and bandwidth, bw, (in MHz), i.e. we should have for the MATLAB function call:

c

>>V = spectrumi(f, fc, bw)

Show that your function is working by evaluating the spectrum for 512 frequencies ranging from
zero to 100 MHz with fc = 5 MHz, bw = 1 MHz. Generate the frequencies with the function s_space (see
Appendix G), i.e. evaluate

>>f =g space(0, 100, 512);

Plot V over a range of frequencies 0 — 10 MHz (approximately).

A.1 (b). Use the MATLAB function [FourierT to obtain a sampled time domain function, v(t) , from the

sampled spectrum computed in problem A.1(a). Plot v(t) by first generating a set of 512 time domain

values with the function s_space, i.e.
>>t =g space(0, 512*dt, 512);

where dt is the time interval between samples (which in this case is dt = 1/100). Then use the t shift and
c_shift functions given in Appendix G so that the sampled values of v(t) shown are not split between

the first and last half of the window. Show that your results agree with the analytical result:
v(t)=cos(27f, z‘)exp[—t2 /4A2]
if we take into account the fact that we only used the positive frequency components.

A.1 (c). Now apply the FourierT function to the sampled v(t) obtained from A.l1(b) and plot the
magnitude of the resulting spectrum V(1) . How is this ¥'( /) different from the one you started with?

A.1 (d). If you look carefully at your plot of V(f) in A.1 (a) you should see that the sampling interval, Af,
in the frequency domain is not quite small enough to give an accurate representation of the Gaussian
function. Take the v(t) signal obtained in A.1 (b), shift it so that all the values in the second half of the
time domain window are zero, and then append 512 zeros to that signal. Apply FourierT to this longer

signal to obtain the spectrum. Show that this process, which is called zero padding, improves our
resolution in the frequency domain. Note that zero padding does not affect the sampling frequency.



Problem A.1 (a)

>>f =g space(0, 100, 512);

>> dt = 1/100; Can also write plot(f(f<10), abs(Vf(f<10)))
>> Vf = spectrumi(f, 5, 1);
>> plot(f(1:50), Vf(1:50)) 004557
>> xlabel( 'frequency, MHZz') 0.4t
>> ylabel( ‘ Vf*) 035
- 0.3
> 0.25
0.2
0.151
017
0.051

OO 1 2 3 4 5 6 7 8 9 10

function V = spectrumi(f, fc, bw) frequency, MHz

A = sqrt(log(2))/(pi*bw);
V = A*sqrt(pi)*exp(-4*(pir2)*(Ar2)*(f -fc).A2);

Here is the Matlab spectrum1 function. Note that the spectrum ranges from 0 to 100
MHz but we want to only plot 0 to 10 MHz. Two ways of doing the plot are shown,
either by enumerating the indices explicitly or getting those indices through a logical
statement.



over the full frequency range

>> plot(f, Vf)
>> xlabel('frequency, MHZz") 05
>> ylabel('Vf')

041
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0.2r
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frequency, MHz

Here is the full spectrum. Note that there are no negative frequencies here, which

would show up in the higher half of this full spectrum for the Fourier transform of a
real signal.



Problem A.1 (b)

>> V(1)

ans = 3.7054e-031
>> VF(1)=Vi(1)/2; ~—— Not really necessary here since dc value is so small
>> vt =2*real(IFourierT(Vf, dt)); ;
>>t=s_space(0, 512*dt, 512); 08

0.6

>> plot(t, vt) oa
>> xlabel( 'time, \mu sec') 02

>> ylabel('vt") OZH \’\r M
04 ,
06

-0.8

vt

Kl

time, u sec

We do not need the negative frequencies to compute the real time domain
function, as discussed in the notes, since we can just take twice the real part of the
complex waveform generated. Note that the signal here is split in the time domain
since it has values for negative times, which appear in the upper half of the time
domain signal just as the negative frequencies will be in the upper half of the
frequency spectrum.



>> plot(t_shift(t, 150), c_shift(vt,150))
>> xlabel( 'time, \mu sec')

>> ylabel('vt')

081
0.6

0.4

- =il

-0.21

vt
o)

-041

-0.6

-0.8

time, p sec

We can use the c_shift and t_shift functions to eliminate this splitting and retrieve
the time domain function in a more recognizable form.



>> {2 = s space(-2.5, 2.5, 512);
>> vit2 =time1(12, 5, 1);
>> plot(t2, vt2)

>> xlabel( 'time, \mu sec')

>> ylabel('vt') 08
0.6
0.4

0.2r

vt
o

-0.21

-0.4

-061

-0.81

1 . . . . . . . .
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 15 2 25
time, u sec

function v = time1(t, fc, bw)
A =sqrt(log(2))/(pi*bw);
v = cos(2*pi*fc*t).*exp(-t.12./(4*A"2));

Here is the analytical form of the time domain function, time1, which corresponds to
spectrum1. It agrees with our FFT results.



Problem A.1 (c)
original time signal coming from doing

inverse FFT of spectrum1
>> Vfn = FourierT(vt, dt);
>> plot(f, abs(Vfn))
>> xlabel('frequency, MHz') 045}
>> ylabel( 'Vfn'")

04r
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03F
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frequency, MHz

Now we have both positive and negative frequencies

We see that if we compute the spectrum of the real time domain signal, we do get
both positive and negative frequencies.



1

Problem A.1 (d) zero padding .

0.6

0.4

>> plot(t, vt) 02 \’\r \/J
>> xlabel( 'time, \mu sec') 50 "\
>> ylabel('vt') 02
-0.4
-0.6 ,
-0.8
o 1 2 3 3 5 6

1 time, p sec

>> vts =c_shift(vt, 150);

>> plot(t, vts) 06
04r

>> xlabel( 'time, \mu sec') ozl
>> ylabel('shifted vt') , w\/\ﬁ ’V\r

-0.2

0.8

shifted vt

04f

-0.6

-0.8

Kl

. .
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time, u sec

Here is the original time domain function and the one that was shifted with c_shift. If
you look at spectrum1 you can see our original sampling gave a jagged function,
which we can improve with zero padding.



>> vte =[vts, zeros(1,512)];

>> Vfe = FourierT(vte, dt);

>> fe =s_space(0, 100, 1024);

>> plot(fe(1:100), abs(Vfe(1:100)))
>> ylabel('Vfe')

0.5

>> xlabel(‘frequency, MHz') 0]

04t
035}
03
€ o025t
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015}
01}

0.05F

0 I I
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frequency, MHz

some improvement here but we could add more zeros for a smother function

Here we pad the time signal with an additional 512 zeros and compute the spectrum
on the finer frequency scale. The spectrum looks smoother.



A2

2. The Hilbert transform, A [ f (t)] , of a function f'(¢)is defined as

H[f(t)]:%Tf(T)dr

—00

When a plane traveling wave of the form f (t —x/ c) is reflected from a surface beyond a critical angle,

as discussed in Appendix D, the Hilbert transform of the function f (t) appears in the reflected wave

causing the reflected waveform to be distorted from the incident wave. It can be shown [A.2] that if
F (a)) is the Fourier transform of f (t) then the Fourier transform of the Hilbert transform of f (t) ,

H (o), is given by H (w)=—isgn(w)F (w) where

+1 @>0

(o)

w<0’

We can use this fact in conjunction with the Fast Fourier transform as a convenient way to compute the
Hilbert transform of a function. To see this consider the follow example:
In MATLAB, define a sampled time axis consisting of 1024 points going from ¢ = 0 to t = 10

usec. Over this time interval define a sampled function f (t) that has unit amplitude for 4.5<¢<5.5
psec and is zero otherwise. Use FourierT to calculate the Fourier transform, F (@), of f(¢). Then use

the relationship /7 (@)=—isgn(®)F (o) to find the Fourier transform of the Hilbert transform of f(¢)

and compute the Hilbert transform itself by performing an inverse Fourier transform on this result with
IFourierT. [Note that if you use only the positive frequency values to compute the inverse, then we only
need to multiply those values by —i ]. Plot your results versus time. In this case the Hilbert transform of

f (Z) can be obtained analytically [Fundamentals]. It is

H[f(z)]:%ln

t—5.5
t—4.5|

Using a different plotting symbol, plot this function also on the same graph. How do your results
compare?



Problem A.2

>> t=s_space(0, 10, 1024);

>> dt=t(2) - t(1);

>> v = (t>4.5 & t < 5.5) + 0.5*( t ==4.5) + 0.5%(t == 5.5);
>> plot(t, v)
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Consider this box-like function of time.




>> Vf = FourierT (v, dt);
>>f=s_space(0, 1/dt, 1024);

>> fs = 1/dt;
>> Vip = VE*(f < fs/2); <——— zero out negative frequencies
>>VH=-Vip,  «——  multiply positive frequencies by -i
>>VH(1) = VH(1)/2; <« not really necessary
since VH(1) is purely
>> vH = 2*real(IFourierT(VH, dt)); imaginary so taking

real part in next step
will eliminate it

>> plot(t, vH)

We can calculate the spectrum of this box function. If we zero out the negative
frequencies and multiply the positive frequencies by — i, then the Hilbert transform of
the box function will be twice the real part of the resulting complex time domain
signal, as shown here.



alternatively, we could have calculated

>> VfH = -i*Vf.*(f<fs/2) +i*Vf.*(f >= fs/2);
>> vHt= IFourierT(VfH, dt);
>> plot(t, real(vHt))

Alternatively, we could have kept both positive and negative frequencies but then
we have to multiply the positive and negative frequency values differently, as shown
here and as discussed in the problem statement.



compare with analytical result

>> hold on
>> vH2 = log(abs((t-5.5)./(t-4.5)))/pi;
>> plot(t, vH2, '--")

Here, vH2 is the analytical Hilbert transform of the boxlike function originally given.
It compares favorably with our numerical calculations.



Another way to get the Hilbert transform is: (see page 124 in the notes
but note there is a sign error on the Hilbert transform part on that page)

signal/2 + i* (Hilbert Trans)/2 ~ «<——  [FourierT(Positive frequency components)

I in the vector Vip
take twice imaginary part

necessary since ;s|
box function A
>> Vfp(1)=Vfp(1)/2; *— has large dc value

>> vH3 =2*imag(IFourierT(Vfp, dt));
>> plot(t, vH3)

Another way to get the Hilbert transform is to recognize it shows up as twice the
imaginary part of the complex-valued time domain function generated when we do
an inverse FFT of just the positive frequency components of the box function. The
expression involving the Hilbert transform on page 124 in the notes has a sign error,
as noted above. You should know that some authors define the Hilbert transform as
the negative of the definition we are using here, so such sign errors can easily
creep into an analysis.



The function and its Hilbert transform
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Here is the original box function and its Hilbert transform.




S.0. In MATLAB write a function y = box(t); that returns the the "box" function given below as
a function of the time, t. [Hint: use logical vectors]

Use the function s_space to generate a vector of 512 time values over the interval [ 0, 10.24)
and evaluate the output of the box function with these values and plot the result to verify that
the box function is working properly.

Use the MATLAB fast Fourier transform function yf =FourierT(y, dt); to determine the
complex frequency spectrum of this signal. Set up a set of sampled frequency values using f
=s_space(0, 1/dt, 512); and plot the magnitude and phase of this spectrum. From the
magnitude plot does it appear there is aliasing present here? Do these plots look like the
plots shown in Fig. A.2 on the next slide (which are based on analytical values)? What is
different?

Use the function yi = IFourierT(yf, dt); to invert the results back into the time domain. Plot the
results versus time. Why do you get a warning message? Verify that you obtain the function
box(t), including the values of 0.5 att=0and t = 1.

box(t)
(0.5 t=0 10
1.0 0<zt<l1

box(t):<05 - 05 ¢ ®
0 otherwise

1.0 t
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Fig. A.1. (a) An example of a simple “box” time domain

function and (b) the same function shifted in time.
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Fig. A.2. (a) The magnitude of the Fourier transform of the
"box" function of Fig. A.1 (a) and (b) the phase of this

transform.



Prob. S.0
function y = box(t)
y=(t>0&t<1.0)+0.5%t==0)+ 0.5%(t ==1);

. 0.
alternatively, we could use

0.
y=(t>0 & t<1.0)+0.5%t ==0 |t ==1); 04
0.4
0.9

>> t=s_space(0, 10.24, 512); 04

>> y=box(t); 22

>> plot(t, y) 0-010 TR 6 &8 10 12
>> plot(t, y, '0") Z;

We can use logical vectors to easily generate the box function. If we plot with lines we
cannot see the % values but if we plot points with open circles they are clearly visible.



>> dt = 4(2) - t(1); ’EM

>> yf =FourierT(y, dt);

>> f=s_space(0, 1/dt, 512); At=1
>> plot(f, abs(yf))

>> yf(1)

A At

ans =1

If we don’t use 0.5 values, the answers
contain errors as shown below:

© ©9 o ©9 o o o o o

0
" . 0 5 10 15 20 25 30 35 40 45 50
define a box function whose

>>y2 =(t>= 0 & t <= 1); values at 0 and 1 are both 1.0
>> yf 2= FourierT(y2, dt);

>> yi2(1)

ans =

1.0200

If we calculate the spectrum of the box function it appears the frequency components are
small at the Nyquist frequency so aliasing should not be a problem. Note that the zero
frequency value is 1.0, as it should be from the analytical values. If we make a box function
whose values at t =0 and t=1 are both one, then when we compute the spectrum the
zero frequency value is incorrect. This is because the discrete Fourier transform, like a
Fourier series, converges to the mean value of the function (which in this case is 5 ) at any
discontinuities (see any book which discusses this aspect of Fourier series).



plot(t_shift(f, 256), c_shift(abs(yf), 256))

1
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o il

0 Yy
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There is also a built-in
function fftshift that will do the same shifting:

plot(t_shift(f, 256), fitshift(abs(yf)))

We can use the t_shift and c_shift functions here to put the positive and negative
frequencies in their normal positions. Note: t_shift here is being used on frequency values,
not time values, but it works the same in either case.



>> plot(f, angle(yf)) ’

1 . 1 . . . . 1
0 5 10 15 20 25 30 35 40 45 50

If we look at the phase, we can also use c_shift and t_shift to put the positive and negative
values in their normal places.



On a finer scale this looks just like Fig. A.2 for the magnitude

>> fsh = t_shift(f, 256);
>> absh =c_shift(abs(yf), 256);
>> plot(fsh(256-50:256+50), absh(256-50:256+50))

Or use plot( fsh(fsh > -5 & fsh <5), absh(fsh > -5 & fsh < 5))

1
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0.7
0.6
0.5F
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0.3f
0.2f

0.1

The spectrum agrees with the analytical values in Fig. A.2 if we plot on the same scale.



And the phase

>> phsh =c_shift(angle(yf), 256);
>> plot(fsh(256-50:256+50), phsh(256-50:256+50))

Or use plot(fsh(fsh>-5 & fsh < 5), phsh(fsh> -5 & fsh < 5))

4

Similarly, the phase looks the same as the analytical results on the same scale.



>> yi=|FourierT(yf, dt); 12
>> plot(t, yi) T

Warning: Imaginary parts of complex X
and/or Y arguments ignored. oo

>> plot(t, real(yi))

>>yi(1)

ans = 0.5000 - 0.0000i 12

>> yi(51) e
ans = 0.5000 + 0.0000i oo

plot(t, real(yi), '0")

If we do an inverse FFT we do recover the correct box function values, including the %
values at the discontinuities. The Matlab warning exists when we try to plot since there are
very small imaginary values present due to numerical roundoff errors, which are eliminated
by taking the real part. We can see these small imaginary values are present when we
examine the values at the discontinuities.



S.1 Consider a time domain signal given by

(t) B {cos(?a;zt) -0.5<t<0.5

0 otherwise

where t is measured in usec

1. Evaluate and plot this signal in MATLAB fromt=-4 usectot=+4
usec. Obtain the Fourier transform of this function analytically (Hint: the
function is even in t so what does this imply about its Fourier transform?)
and plot it in MATLAB from zero to 14MHz .

(a) What is the value of the Fourier transform at zero frequency ? How is
this value related to the properties of y(t)?

(b) At what frequency is the Fourier transform a maximum? How is this
frequency related to the properties of y(t)?

2. From the samples of y(t) over the time interval (-4, 4) obtain the Fourier
transform numerically with the MATLAB FFT function FourierT. Plot the
magnitude of this function and show that it agrees with the magnitude of
your analytical result. Use IFourierT and show that you recover the y(t)
function.




Prob. S.1

>> t=s_space(-4, 4, 512);
>> y= cos(3*pi*t).*(t>=-0.5 & t <=0.5);
>> plot(t, y)
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Here is the Matlab generated time domain signal.



Analytical Fourier Transform

Method One:

+1/2

Y(f) = _[ cos(37rt)exp(27ziﬁ)dl
-1/2
+1/2 : _ .
_ J exp(37zzt)+zexp( 37rzt) exp(2m't)dt

-1/2
+1/2

= {exp[ 27t (f +3/2)+exp[ 27t (f -3/2)]]}

1 exp[27zit(f+3/2)}|t:+”2 exp[Zirit(f—3/2):|
2| 27i(f+3/2) L_”; 27i(f -3/2)

sin[z(f+3/2)] +sin[7z(f—3/2)]
~2x(f+3/2) 27(f-3/2)

‘t:—l/Z

In this case we can do the Fourier transform analytically since we can write the sine
and cosine functions in terms of exponentials that can be easily integrated.



Method Two

+1/2

Y(f)= J cos (37t exp(27ift)dt
s 0

= J cos(37t)cos(27 ft)dt +i I cos(37t)éin (27 ft ) dt

-1/2 -1/2

odd

+1/2

Y(f) = I cos(37rt)cos(27rﬁ)dt

-1/2

from integral tables _ sin[;r(f—3/2):| N sin[;r(f+3/2)1
22(f-312) | 2x(f+3/2)

Alternatively, we can find the Fourier transform integrals in this case in tables.



evaluate and plot spectrum (note that it is real)
>> f= linspace(0, 14, 200);
>> yf =sin(pi*(f-1.5))./(2*pi*(f-1.5)) + sin(pi*(f+1.5))./(2*pi*(f+1.5));
>> plot(f, yf)

0.6

-0.3
0

Here is the plot of the Fourier transform, which in this case is real (why?).



+1/2
(@) Y(0)=—"= I cos(3zt)dt = area under the signal
37 n =-0.2122

(b) Y(f) is max at approximately f= 3/2 MHz. Why?

The signal cos(3nt) is oscillating, and goes through a complete cycle
from t=-1/2 tot=1/6, so the period, T, is T= 4/6 = 2/3 u sec
Since the frequency of this oscillation is f = 1/T the predominate
frequency should be f = 3/2 MHz approximately

1

y\

- _ 0.6 _
t=-1/2 ~ t=1/6
0.2\ /

-0.2

-0.4
-0.6]
-0.8]

From the analytical transform expression we see the zero frequency value is just
the area under the time domain signal. The maximum of the Fourier transform we
see is just approximately the dominant frequency at which the time domain signal is
oscillating.



>> dt = (2) —t(1);

>>f=s_space(0, 1/dt, 512); 0r
>>yf2 = FourierT(y ,dt); 08
>> plot(f, abs(yf2)) °
>> 1/dt »
ans =64  max frequency o

0.7

To get a plot from 0 to 14 MHz °
>> plot(f(f<14), abs(yf2(f<14)))

0.2

01

If we compute the frequency response with the FFT we see the same magnitude as
found from the analytical function.



If we plot yf2 itself (not its magnitude), we see:

0.6

>> plot(f(f<14), yf2(f<14))

0.4

0.2

-0.21

-04

-0.6

-0.8

Sy
N
IS
=Y
ol
s
N
=

This does not look like our Y(f) at all. Why?

However, here the Fourier transform is not real so if we try to plot it we do not
recover the same result as with the analytical result.



The reason is that we started sampling at t = -4 usec, but in the FFT
this initial time is taken to be t = 0, so as far as the transform is
concerned our signal looks like it is centered att = 4 psec, nott = 0.
This shifting introduces a phase term in the Fourier transform

y(t) o Y(f)
y(t—1,) > exp(27if1,) Y (/)

so for our case Y(f)‘FFT ZCXP(Sﬂ'if)Y(f)

we can get rid of this factor and plot again:

analytical

>> yf3=exp(-8*pi*if)."yf2;
>> plot(f(f<14), yf3(f<14))

Warning: Imaginary parts of complex X
and/or Y arguments ignored.

There are values for the time domain signal for negative times, so just as in the
frequency domain, these negative time values should appear in the upper half of the
time domain window over which we sample the signal, i.e. the signal should look
“split” in order to properly represent a periodic function, as required by the discrete
Fourier transform. We did not do that splitting so our signal appears centered att =
4 microseconds, which introduces a phase term in the Fourier transform. If we
eliminate that phase and then plot we do see the proper frequency response (with
very small imaginary parts from numerical roundoff, which can be ignored).



Now, use the inverse FFT to recover the y(t):

>> yi =IFourierT(yf2, dt);
>> plot(t, yi)

Warning: Imaginary parts of complex X
and/or Y arguments ignored.
1 T T
0.8 n B

0.6 q

0.4 q

0.2 i

-0.2| T

04} i

-0.6 q

-0.8 q

We do recover the original time domain signal from the FFT when plotted on the
original time axis.



Fig. B.14. An example circuit.

B.2. For the circuit shown in Fig. B.14 obtain the Thévenin equivalent source and impedance in terms of
the given circuit elements.



Problem B.2

find the Thevenin equivalent circuit
for this example

C
— b

I . .
Vi O R = V, Open-circuit
i voltage
V~Vy=—
—iwC
V,=RI
Eliminating I gives V, = —ioRC
1—-iwRC

Using the circuit relations for the voltage across the capacitor and the resistor, we can
eliminate the current and express the open-circuit voltage in terms of the known circuit
parameters. This open circuit voltage is just the Thevenin equivalent source.



\% 110 R ;IZ éR
! ? ? L| Vp
11
(1) V-V ==l
2 VL:2R(II_IZ)
3) V,=RI,

. . I 1
From the second and third equations [, =V, | —+—
2R R,

Using this current in the first equation gives

If we put a load resistor at the output we can examine the voltage drops in the two “loops”
of the circuit to get an expression for the voltage across the load resistor, as shown on the
next page.



- —iwRC %
' (1-ioRC+R/R,)"’

The equivalent impedance is given by

Z =R, (%—1] so we find

L
Z=R R/R, _ R
1—ioRC 1—ioRC

The equivalent impedance can be obtained from the voltage across the load and the open
circuit voltage, thus yielding the Thevenin equivalent circuit.



alternate method

11, R% \%
L
V=R(I+iaCV)  ~
4 R
Z:—:
= I 1-iwRC

Another method to get the equivalent impedance is to short out (i.e. remove) the voltage
source and examine the ratio of the voltage at the output in this configuration to the
current flowing into the circuit. This ratio is just the equivalent impedance.



2.1 The MATLAB function model_pulser takes as inputs an energy setting (energy = 1, 2, 3, 4), a damping setting
(damping = 0, 5, 10), a resistance loading , RL, (in ohms) across the output terminals of the pulser and returns the
sampled voltage, vt, across RL (in volts) and the sampled time values, t, (in psec). The form of the calling sequence of
this function is:

>>[t, vt] =model_pulser( energy, damping, RL);

Use this model pulser at energy = 2, damping = 5 settings for both open circuit conditions (RL = inf) and a given load
(RL =250 ohms) to determine the Thévenin equivalent source voltage (in volts) and impedance (in ohms) of the pulser
at these settings as functions of frequency over the range of frequencies from 0-20 MHz and plot the magnitude and
phase of these functions over the same frequency range. Use the MATLAB unwrap function to eliminate any artificial
jumps of in the phase plots. Example:

>> plot(f, unwrap(angle(Vf)))

Show and explain all the steps you used to obtain your answers.




Problem 2.1
[ t, vt] = model_pulser( energy, damping, RL)

vi(t)
O O
energy damping R,

The Matlab function model_pulser simulates this simple pulser and load model.



>> [t, vt] = model_pulser(2,5,inf);

>> plot(t, vt) 50

>> size(t) 0

-50

ans =1 1024
volts -100H

>> dt = t(2) - t(1) %0

-200

dt =0.0025 250

>> fmax = 1/dt open circuit voltage versus time in psec

fmax = 400.3914

Here is the open circuit voltage of the model_pulser. We see there are 1024 time points
with a time interval between sampling corresponding to a sampling frequency of about 400
MHz.



expanded view of the open circuit voltage

>> plot(t(t< 0.5), vt(t< 0.5)) 50

0
-50
volts
-100|

-150]

-200,

_2500 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 045 05

time, pusec

Here is an expanded view of the open circuit voltage so you can see the characteristic
output of a “spike” pulser



>> Vs =FourierT(vt, dt);
>> f=g_space(0, fmax, 1024);
>> plot(f , abs(Vs))

mag.
volt/MHz 41

0 50 100 150 200 250 300 350 400 450

frequency (MHz)

Here is the magnitude of the pulser open circuit response in the frequency domain. Since
the magnitude is small at the Nyquist frequency our sampling frequency was likely
sufficient.



>> plot(f(f< 20), abs(Vs(f<20))) Thevenin equivalent source

6.5
6
55
5
45
mag. .
volt/MHz
35
3
25f

2

>> plot(f(f<20), unwrap(angle(Vs(f < 20)))(;
5

8 10 12 14 16 18 20

phase 42
(rad) 4

0‘2;162‘31‘01‘21‘4161‘820
frequency (MHz)

Here is the magnitude and phase of the open circuit voltage spectrum over a range of
about 20 MHz.



equivalent impedance
>> [t, vl] = model_pulser(2,5,250);

45

>> VIf =FourierT(vl, dt); 40
>> Z = 250*(Vs./VIf -1); %

30
Warning: Divide by zero. mag. 25

>> plot(f(f < 20), abs(Z(f < 20))) (ohms) 20
15

10
5
0

0O 2 4 6 8 10 12 14 16 18 20

>> plot(f(f < 20), unwrap(angle(Z(f <20))))
1.6

1.4
1.2

phase '

(rad) ©%
0.6

0.4
0.2
0

0o 2 4 6 8 1‘01‘21‘4161‘820
frequency, MHz

Here is the output of model_pulser with a 250 ohm resistor at the output and the pulser
impedance calculated according to the procedure outlined in the notes. One could avoid
the Matlab warning by simply omitting the zero frequency calculation. Plotted are the
magnitude and phase of the impedance.



Note that the waveform has changed very little from open-circuit
to 250 ohm loading:

>> plot(t(t < 13)vit < 13)

>> hold on
0 =
>> plot(t(t< .13),vI(t < .13), --') .
>> hold off -0
volts -100

-150

-200

-250 L I . . ,

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

time, usec

Here is a detailed plot of the open circuit voltage and the output voltage under load,
showing the small changes in the output waveform.



Check that results don’t depend on load resistance RL. Use 500 ohms instead

equivalent impedance

>> [t, vI2] = model_pulser(2,5,500);

>> VIf2 =FourierT(vI2, dt); 35

>> 72 = 500%(Vs./VIf2 -1); mag.
: ’ (ohms) %

Warning: Divide by zero.

>> plot(f(f <20), abs(Z2(f <20))) 10

>> plot(f(f <20), unwrap(angle(Z2(f < 20))))

0 2 4 6 8 10 12 14 16 18 20

phase 4
(rad) o4
0.6
0.4
0.2

0

0 2 4 6 8 10 12 14 16 18 20

frequency, MHz

One can see that the calculated impedance does not depend on the load resistance.



The Thevenin equivalent pulser

V(@) ()

Here is the Thevenin equivalent circuit to the model_pulser.
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G(f)="r2 (C.23)

o(/)
1(f)

>>V = pulserVT(200, 0.05, 0.2, 12, t);

C.2 It is not physically possible to generate a delta function as the input of an LTI system to obtain its
impulse response. However, it is possible to obtain the transfer function of an LTI system by
deconvolution of a measured output with a known input as shown in Eq. (C.23). Consider a MATLAB
function LTI X that represents a “black box™ LTI system. It can be evaluated in the form

>> 0 =LTL_X(, dt)

Where 1 is a sampled time domain input (with sampling interval dt) and O is the time domain output. Use
as an input for this LTI system the voltage output of the pulserVT function discussed in the notes, whose
Matlab call is shown above, and where t is a vector containing 512 sampled times ranging from 0 to 5
psec., and obtain the transfer function of this system as a function of frequency by deconvolution. Plot the
magnitude and phase (in degrees) of this transfer function from zero to approximately 30 MHz. To obtain
the impulse response function from this transfer function we would have to compute its inverse Fourier
transform. Is that possible with this function?



c2 LTI System Transfer function by Deconvolution

>>t=s_space(0,5, 512); -
>>V = pulserVT(200, 0.05, 0.2, 12, t);
>> plot(t, V) &
>> dt = t(2) - t(1); Voo
>> 0 = LTI_X(V, dt);
>> plot(t, O) o
>> 1/dt o

0 05 1 15 2 25 3 35 4 45 5

ans =

102.4000 <+— sampling frequency 0

50

-100

-200

-250

-300

-350

0 05 1 15 2 25 3 35 4 45 5

Here is the output of pulserVT, which is used as the input to our LTI_X system, and the
corresponding LTI_X output. We see the sampling frequency here is about 100 MHz.



>> |f =FourierT( V, dt);

>> Of = FourierT( O, dt); 2
>> G =Of /If;
>> f =s_space(0, 1/dt, 512); G|

>> plot(f(f<35), abs(G(f<35))) ‘

actual transfer function |G|
magnitude

_ —1007if s
200 —407if

Since the only “noise” in this example is due to very small numerical errors, we can try to
do the deconvolution directly by computing the input and output spectra and do a direct
division, as shown. We see the magnitude of the resulting transfer function agrees with the
exact transfer function, whose expression and plot are given above from 0 to 30 MHz.



200

>> plot(f(f<35),(180/pi)*angle(G(f<35)))

100

phase of G

(degrees)
0 |
_suﬁ |
100 ‘ ‘ ‘ ‘ ‘ ‘
0 5 10 15 20 25 30 35
0
-10
-20
actual transfer phase of G *
function is zero at f =0 so (degrees)
phase is indeterminant 50
-60
-70
-80
-90

The phase also agrees except at f = 0 but since the transfer function is zero at f = 0 its phase
is undefined and so arbitrary at that frequency.



>> plot(f, abs(G))

25

G does not satisfy Nyquist

criterion so we need to filter Al

out frequencies above the

Nyquist frequency which is
about 51.2 MHz here
before we can truly invert
with the Fourier transform

15

€]

L L L
0 20 40 60 80 100 120

If we examine the transfer function from 0 to 100 MHz we see it does not satisfy the
Nyquist criterion so we need to do some filtering if we hope to reliably invert this function
to obtain the impulse response function in the time domain.



If we do try to invert this, here is what we get:

This actually looks somewhat like the true signal but in fact it is quite different .
We will see why later what the "exact" solution looks like.

250

200

150

100

50

-50

However, if we do try to do the inversion, here is what we get. We will now show how we
can get the impulse response function in a correct manner.



We could try to just eliminate (filter out) the frequency spectrum of G
above 40 MHz:

>> Gf1 = G.*(f<40);
>> plot(f, abs(Gf1)) 25

0.5

NOTE: This slide and the following slides continue the discussion beyond what was asked in
the problem.

A very simple way to do a more proper inversion is to simply zero out all positive
frequencies above 40 MHz and all the negative frequencies.



Now, invert, remembering we have also removed all the
negative frequencies

>> gt1 = 2*real(IFourierT(Gf1, dt));

We did not have to divide the zero frequency value by two since
it already is almost zero:

>> Gf1(1)
ans =

7.6879e-017

Here is the inverse Fourier transform of our filtered function, using only the positive

frequencies. The zero frequency value is almost zero so we do not have to divide it by two
before doing the inversion.



Because we abruptly zeroed
out the frequency spectrum
at 40 MHz, the time domain
shows lots of ringing:

>> plot(t_shift(t,100), c_shift(gt1, 100))

200

150

100

.50}

-100

This is the impulse response function we get. Note that we have used c_shift and t_shift
here since the impulse response function has values for negative times so without these
shifts the waveform would appear to be “split” in the time window. Because we abruptly
zeroed out the frequency components at 40 MHz, this filtered function will have a jump in
the frequency domain, which causes the ringing we see above in the time domain. This
ringing can hide the true behavior of the function so we would like to eliminate it.



Expanded view

>> ts = t_shift(t,100);
>> gt1s = c_shift(gt1,100);
>> plot(ts(1:200), gt1s(1:200)) >

150
1001

501

0 W "
-50+

100
-

I I I I I
-08 -06 -04 -02 0 02 04 06 08 1

Here is an expanded view of the impulse response function that shows the ringing more
clearly.



It is better to smoothly taper off the response. The function Ip_filter
uses a cosine function to do this. This is an example of a low-pass
filter:

>> Vf = Ip_filter(f, 20, 40);

>> plot(f, Vf)

09
0.8}
07h

Vi 06F
05F
04F
03
02

0.1r

Rather than abruptly cutting off the high frequencies is it better to use a smooth taper. The
Ip_filter function (it is a “low pass” filter, hence the name) uses a cosine function taper,
which in this case starts at 20 MHz and ends at 40 MHz, and where all the frequency values
below 20 MHz are left unchanged.
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function Vf =lp_filter(f, fstart, fend)
if fend > f(end)
error( 'fend exceeds max frequency')
end
const = ones(size(f)).*(f < fstart);
taper = cos(pi.*(f-fstart)./(2*(fend-fstart))).*(f >= fstart & f <= fend);
Vf = const + taper;

Here is the Matlab Ip_filter function.

11



Now , multiply our G function by this filter and then invert:

>> Gf2 = G.*Vf;
>> gt2 = 2*real(IFourierT(Gf2, dt));
>> plot(t_shift(t,100), c_shift(gt2, 100))

200

Now there is much less ringing

150

g(t)

501

-50

If we multiply the transfer function by this low pass filter and then do an inverse Fourier
transform, we see the ringing is greatly reduced.
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Expanded view

>> ts = t_shift(t,100);
>> gt2s = c_shift(gt2,100);
>> plot(ts(1:200), gt2s(1:200))

200

150

1001

g(t)

50

0 | r(/_,..—
50 s P B ‘
4 08 06 04 02 0 02 04 06 08 1

Here is an expanded view of the impulse function. There is, however, still some ringing. We
can actually do even better with a different approach which we will now discuss.

13



Another way to get the impulse response
As the frequency goes to infinity G goes to 2.5 (a constant)
But, we know the Fourier Transform of a delta function is 1.0 so
the inverse Fourier Transform of 2.5 gives 2.5 5(t)

Since we know this inverse transform exactly, subtract the
constant 2.5 part from G (throwing out the negative frequencies):

25

>> Gt = (G-25)*f<50; 1°1 "

>> plot(f, abs(Gt)) 1

0.5

The transfer function goes to a constant value of 2.5 at high frequencies. We know that the
inverse Fourier transform of a constant at all frequencies is just that constant times a delta
function. Thus, let us subtract off that constant value and eliminate all frequencies above
50 MHz. The plot of the resulting function is shown.
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Now use a low pass filter to make the function go to zero smoothly

>> Vf = Ip_filter(f, 20, 50);
>> Gtf = Gt.*Vf;
>> plot(f, abs(Gtf)) )

25

|Gf]

0.5f

There is still a small discontinuity in our function, which will cause some ringing, so lets
now use a low pass filter to make it smoothly go to from 20 to 50 MHz, as shown in the
above plot.



Now, invert this part, remembering to take half the zero frequency value:

>> Gtf(1) = Gtf(1)/2;
>> gt3 =2*real(IFourierT(Gtf, dt)); 2.56(1)
>> gt3s =c_shift(gt3, 100);

>> plot(ts(1:200), gt3s(1:200))

If we add back in the delta
function part (shown in red) we
can see clearly what the total
impulse response of this system

looks like: 1ok
a(t)

-20-

-25

If we do an inverse Fourier transform of these positive frequency components and add in
the delta function part we subtracted off, we get a response which is very close in fact to
the exact impulse response.
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impulse response function o (t) : 2.5 5(1)

25 . . . . . . . . .
-1 -08 -06 -04 02 0 02 04 06 08 1

i(t) — mx —o(t)

+00

o(t)z Ji(T)g(Z—Z’)dT

or o(z) = I;courierT[G(w)I(a))J (x easier

With this impulse response we can then determine the response of our LTl X system to any
input, either through deconvolution (in the time domain) or through multiplication in the
frequency domain followed by an inverse Fourier transform. The frequency domain
approach is generally much easier.



C.3. Consider an LTI system which has as its transfer function

6(f)= {cos(7rf/40) 0< f <20MH:

0 otherwise
Also, consider an input spectrum to this system given by
1(f)= {10—f/20 0< f< 20MHz‘
We expect the output of this system will then have the spectrum
O(f)=G(N)I(S)-

However, if we add noise to these functions then given O and / it may not be possible to reliably obtain G
by simple division and we must use some filter instead such as the Wiener filter. The MATLAB function
noisy will generate noisy sampled versions of both the O and [ given previously over a range 0-40 MHz.
The function call is:

otherwise

>> [0, I] = noisy( ) ;

Plot both O and 7 from 0 to 40 MHz to verify those functions are correct (the noise you will see is very
small) and then attempt to obtain G by direct division, i.e. compute

and plot your results 0-40 MHz. Then use a Wiener filter instead to find G and plot your results. Take € =

0.01. Are the results sensitive to €? Is there any other way (besides using the Wiener filter) that you can
get the “right” answer?



C3 Noisy Deconvolution

>> [0, | ] = noisy; 0 -
>>f=s_space(0,40,512); 04
>> plot( f, O) 03
>> plot(f,I)
|
//
very small noise

The function noisy reproduces the input and output spectra of a system with a very small
amount of noise added to them. Plotted above are these noisy signals, which look much
like their original noise-free versions.



100

>>G=0./1; 50
>> plot(f, G)

-50F
The noise here is very

small but it dominates the
division process 1500

-100-

-200!
0

Here is a result of the deconvolution by division, which shows that the noise is much larger
than any of the wanted signals ( which are in the 0 to 20 MHz range).



function Y = Wiener_filter( O, |, e)
% WIENER_FILTER provides a 1-D filter for desensitizing

% division in the frequency domain (deconvolution) to noise.

% The filter takes a sampled output spectrum ,O, and an

% input spectrum, |, and computes Y = O*conj(l)/(|]I|*2 + e*2*M*2)
% where M is the maximum value of || and conj( | ) is the

% complex conjugate of I. The constant e is generally taken as

% a constant to represent the noise level. Small values of e

% such as e = 0.01 often work well for ultrasonic systems.

%The calling sequence is:

% Y = Wiener_filter( O,1, e);

%

M = max( abs(l) );

Y = O.*conj(l)./((abs(1)).A2 + e*2*M*2); 1

Gf
>> Gf = Wiener_Filter( O, I, .01); 05
>> plot( f, Gf)

If, instead we use the Wiener _filter function to do the deconvolution we see the proper
transfer function in the 0-20MHz bandwidth of the system and the noise at higher
frequencies has been eliminated.



If we make the constant too large it will affect
the division process where noise is not a
problem:

>> Gf = Wiener_Filter(O, 1, 0.1);
>> plot( f, Gf)

some differences

25 30 35 40

some differences

We are free to choose the noise constant but we must not make it too large or it will affect
the values within the bandwidth of the system. Here a choice of e = 0.1 rather than e = 0.01
shows some small differences. Generally, we try to choose an e which represents the
average noise we see in the system.



Another way to look at the Wiener filter

2

%

G- 10) _0 1]
|I|2 +&° {rnax|1|}2 1 |1|2 +&* {max|1|}2

Wiener filter, W

result for noise-
free system

We do not want to implement the Wiener filter in the second form
given above, however, since it still contains the O/l term which will
give problems.

The actual Wiener filter modifies the original direct division in the manner shown by the
second form given here. However, we do not want to implement the deconvolution in this
second form as it still involves a direct division.



We could also recover the correct G here by computing G = O/l and
just looking over the 0-20 MHz range where O and | are both bigger
than the noise. Here we look over a slightly larger range so we can
also see the noise

>> plot(f(1:260), G(1:260))
>> f(260) 15
ans = 20.2740

|
5 10 15 20 25

The problem here is how do we know beforehand where can
we reliably trust the division? The Wiener filter takes care of
that automatically

We could also get good deconvolution results by only doing the direct division where the
signal-to-noise ratio is high, as shown here, but the Wiener filter essentially already does
that automatically for us.



3.1. Consider a 1 meter long, 50 ohm cable, where the wave speed in the
cable is one half the wave speed of light, ¢, ,in a vacuum (c, = 2.998 x

108 m/sec). Determine the transfer matrix components of the cable at
10 kHz, 100 kHz, 1 MHz, 20 MHz.



function T =cableT(f, L, Z);

% cableT(f,L,Z) calculates the transfer matrix for a cable L m long
% with an impedance of Z ohms and a wave speed one half

% the speed of light in vacuum. The frequency, f, is in MHz
€=2.998E08/2;

kL = 2*pi*f*(1.0E06)*L/c;

T=[cos(kL) -i*Z*sin(kL); -i*sin(kL)/Z cos(kL)];

Here is a Matlab function that computes the transfer matrix for a cable.



>> T=cableT(.01, 1, 50)
T= 1.0000 0-0.0210i 10 KHz
0 - 0.0000i 1.0000

>> T=cableT(.1, 1, 50)
T = 1.0000 0 - 0.2096i 100 KHz
0 - 0.0001i 1.0000

>> T=cableT(1, 1, 50)
T =0.9991 0 - 2.0952i 1 MHz
0 - 0.0008i 0.9991

>> T=cableT(20, 1, 50)
T=0.6687 0 -37.1759i
0 - 0.0149i 0.6687

20 MHz

We see at 10 kHz the cable acts just as essentially a pass through device but as the
frequency gets higher that is no longer true. At MHz frequencies the cable does modify the

signals passing through it.



(3.7)

3.2. Consider a cable for which we wish to measure the transfer matrix
components (as a function of frequency). We can do this in MATLAB for
a function cable X which has the calling sequence:

>>[v1, i1, vt, it] = cable_X(V, dt, R, L, 'term’);

1l It

V(t) \Y [T]

Fig. 3.12. A measurement setup for obtaining the transfer matrix components of a
cable.

The input arguments of cable X are as follows. V is a sampled voltage
source versus time, where the sampling interval is dt. R is an external
resistance (in ohms). This source and resistance are connected in series to
one end of the cable, which is of length L (in m) as shown in Fig. 3.12.
The other end of cable can be either open-circuited or short-circuited. The
string 'term' specifies the termination conditions. It can be either 'oc' for
open-circuit or 'sc' for short-circuit. Cable X then returns the “measured”
sampled voltages and currents versus time (v1, il, vt, it ) where (v1, il) are
on the input side of the cable and (vt, it) are at the terminated end (Note:
for open-circuit conditions it = 0 and for short-circuit conditions vt = 0).
As a voltage source to supply the V input to cable X use the MATLAB
function pulserVT. For a set of sampled times this function returns a



sampled voltage output that is typical of a “spike” pulser. Make a vector, t,
of 512 sampled times ranging from 0 to 5 psec with the MATLAB call:

>>t =g space(0, 5, 512);

(see the discussion of the s_space function in Appendix A; a code listing of
the function is given in Appendix G and the course slides) and call the
pulserVT function as follows:

>>V = pulserVT(200, 0.05, 0.2, 12, t);

For the resistance, take R = 200 ohms, and specify the length of the cable
asL=2m.

Using Eq. (3.7), determine the four cable transfer matrix
components and plot their magnitudes and phases from 0 to 30 MHz. Note
that the outputs of cable X are all time domain signals but the quantities in
Eq. (3.7) are all in the frequency domain so you will need to define a set of
512 sampled frequency values, f, through:

>>dt = t(2) -t(1);
>>f =s space(0, 1/dt, 512);

What is the range of frequencies contained in f here?



3.2 Cable Transfer Matrix Components

0

>>t=s_space(0,5, 512); -20
>>V = pulserVT(200, 0.05, 0.2, 12, t); 40
>> plot(t, V) 60
>> dt = 1(2) - t(1); o
>>f=s _space(0, 1/dt, 512); 120

-140
-160
-180
200

sampling frequency = 1/dt = 102 MHz

0 051 15 2 25 3 35 4 45 5

To determine the transfer matrix components we need a voltage source, which we get here
by using the Matlab function pulserVT, a function which simulates a spike pulser. We see
the sampling used here generates a maximum frequency of about 100 MHz.



>> [V1, 11, Vi, It] =cable_X(V, dt, 200, 2, 'oc");
>>[V12, 112, Vi2, 1t2] =cable_X(V, dt, 200, 2, 'ss");
>> data =[V1' [1' V' It' V12' 112" Vt2' It21;

>> V1f = fdata(:,1); all at once
>> |1f =fdata(:,2);

>> Vif =fdata(:,3); «———— should be zeros

>> |tf =fdata(:,4);

>> V12f =fdata(:,5);

>> |12f =fdata(:,6);

>> Vt2f =fdata(:,7);

>> |t2f =fdata(;,8); <« should be zeros

>> fdata=FourierT(data, dt); <—— put data in columns, do FFTS

1.2

>> T11 = VIf./VAf; 1

Warning: Divide by zero.

(Type "warning off MATLAB:divideByZero" to 0.8

suppress this warning.)

>> plot(f(f<30), abs(T11(f<30))) 0.8
0.41

mag(T11) ,,!

0

0 5 10 15

Here we feed the output of pulserVT into one end of the unknown cable modeled by
cable_X under both open circuit and short circuit conditions at the other cable end. The
cable_X function gives us the “measured” voltage and current at both ends under both of
these termination conditions. We can put all of these “measurements” into the columns of
a data matrix and then do an FFT of all this data at once. Then using Eq. (3.7) we can find

the transfer matrix components. Here is the magnitude of T11.



>> plot(f(f<30), (180/pi)*unwrap(angle(T11(f<30))))

phase of T11 0
-100

-150

-200

>>T21 =11f./Vf; 002

15

20

25

30

Warning: Divide by zero. 0.018
(Type "warning off MATLAB:divideByZero" 0.016
to suppress this warning.) 0.014

>> plot(f(1:150), abs(T21(1:150))) 0600112

mag(T21)  0.008
0.006
0.004
0.002

0p

5

10

15

20

25

30

Here is the phase of T11 and the magnitude of T21.




>> plot(f(f<30), (180/pi)*unwrap(angle(T21(f<30))))
0
-10
-20
-30
phase of T21 -40
-50
-60
-70
-80
-90
-100
0

>> T12= V12f./It2f;
>> plot(f(f<30), abs(T12(f<30)))

mag(T12) 25

Here is the phase of T21 and the magnitude of T12. Note that T12 is not equal to T21.



>> plot(f(f<30), (180/pi)*unwrap(angle(T12(f<30))))

phase of T12

>> T22=112f/It2f;
>> plot(f(f<30), abs(T22(f<30))) ]

10

20

25

30

mag(T22)

0.6

20

25

30

Here is the phase of T12 and the magnitude of T22.




>> plot(f(f<30), (180/pi)*unwrap(angle(T22(f<30))))

50

0

phase of T22 *°

-100

-150 [

200

5 10 15 20 25 30

Finally, here is the phase of T22. We see that the behavior of all of these elements follows
what we expect from the cable model discussed in the notes.
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Fig. D.27. A plane P-wave incident on a rough interface.

D.1. Consider the case where a solid is split along a rough planar interface which lies in the plane x = 0 as
shown in Fig D.27. The two portions of the solid are in contact over some places on the interface and are
not in contact at other places. Where the two sides touch the stress 7 is continuous, and where the sides

do not touch 7 =0(on both sides) so again the stress is continuous. Where the sides touch the

displacement u_ is continuous but where the sides do not touch there can be a displacement of one

1o

AAAA
) 1
\
o1 |
i
v
i

Fig. D.28. A measurement setup for ultrasonically examining a partially closed crack. Note that the crack extends
across the entire width of the block.

relative to another. It is reasonable to expect that the amount of this relative displacement is proportional
to the stress at the interface. Thus, under these conditions, we could expect that we might specify
boundary conditions on the interface as:

continuity of stress:

T, (x=0",t) =7 (x:0+,t)



stress proportional to the relative displacement:
7. (x=0,t)=x, [ux (x = 0*,1) —u, (x = 0’,t)].

The constant x, determines the relative “springiness” of the interface. The case x = 0 corresponds to a
stress free interface (no transmission) while x, — comeans that the displacement is also continuous so
that we have perfect contact and complete transmission (no reflection).

(a) Determine the reflection and transmission coefficients (based on stress ratios) for a P-wave at
normal incidence to this rough interface and plot the magnitude and phase of these coefficients versus
frequency from 0-20 MHz for steel with x, =150 MPa/um.

(b) The magnitude of transmission coefficient, 7, you obtain in part (a) should be of the form ,
|T (f )| =1/1+C*f* , where f is the frequency and the constant C is related to &, and pc,. We could

use this transmission coefficient to try to estimate the effects of crack closure of a rough crack as follows.
Figure D.28 shows a compact tension specimen which is used to grow a through-thickness crack from a
starter notch. If the compact tension specimen is then loaded, the sides of this rough crack will touch at
some points and not at others, so the crack surface will look like two rough surfaces in partial contact, the
same problem as shown in Fig. D.27. Suppose we now examine this crack with a through-transmission
immersion ultrasonic experiment, as shown in Fig. D.28, and also do a reference experiment where we

move the transducers laterally so that they are not over the crack. Let VC( f ) be the frequency

components of the measured voltage for the case when we are over the crack, and let V. ( f ) be the
frequency components of the measured voltage for the reference experiment, Since the only difference
between two setups is the transmission coefficient at the crack, we expect that the voltages to satisfy
V.(f)=T(f)V,(f)- The MATLAB function rough_crack gives the sampled received voltage versus

time, vc, for the case when the transducers are placed over the crack, the sampled voltage versus time, vr,
for the reference setup, and the sampled time values, t. The function call is:

>>[ vc, vr, t] =rough_crack

Using this function, obtain the measured transmission coefficient, T’ ( f ), versus frequency [
Note: if you want to use a Wiener filter here, the numerical round off “noise” is extremely small so
choose a small constant value such as £=0.001 or smaller]. Using this transmission coefficient,
determine a best fit value of C, and the corresponding value of x, (in MPa/um), which is a measure of
how closed the crack is. Assume the compact tension specimen is made of steel whose specific plane
wave impedance is z‘=46x10° kg/(m*-sec).



D.1 Rough Crack, part (a)
U. U U

i r t

e

T =pc Ou,
w = PG, o
u, =U, exp(ikpx—ia)t) t. =T exp(ikpx—ia)t) =ipwc,U, exp(z'kpx—ia)t)
u =U, exp(—ikpx —ia)t) 7. =T exp(—ikpx —ia)t) =—ipwc,U, exp(—ikpx—iwt)
u,=U, eXp(ikpx_ia)t) r. =T exp(ikpx—ia)t) =ipwc,U, exp(ikpx — ia)t)
r(0)=7(07) = T+, =T,

: e (0 r (1 1
TxX(O )=K[ux(0 )_MX(O )] =) 7;:’{i,oa)cp _Lipa)cp-i-—ipa)cpﬂ

Here are the displacements and stresses for plane waves incident on and reflected
or transmitted from our rough crack (modeled as a planar surface with boundary
conditions that simulate the roughness.) For places where the faces of the crack
touch the stress is continuous while the stress is zero on both faces where the crack
is open (and so also is continuous). Thus, we can say the stress is continuous at
the crack, which is our first boundary condition. If the crack were completely closed
we would expect the displacement also to be continuous, but for those portions of
the crack that are open, the two faces of the surface can have different
displacements. We will assume that any displacement differences that are present
at the interface are proportional to the stress at the interface. This is our second
boundary condition. Physically, we are treating the interface here like a “springy”
interface, where K is like a spring constant. We can use these two conditions at the
crack surface to obtain relations between the stress amplitudes of the waves
present.



solution is
T
T =—t= .1 = !
T 1_la)pcp 1_mpcpf
2K K
iwpc, inpe, f
R :L: 2K _ K
LT l_ia)pcp _z';rpcpf
2K K
Let co mpc,
K
__ 1 1
“Ti-icf N=rrer
g
o 1-icf

We can use those two relations to solve for the transmission and reflection
coefficients at the rough crack, which we can put in rather simple forms in terms of

the constant C. Also shown is the form of the magnitude of the transmission
coefficient as a function of frequency.



frequency in MHz

6 2
Cf = 7z><46><]iO kg//m2 SeczFx106L
150x10° kg —m/m” —sec sec

10°m

_H67F _ 963 F
150

]
© 1-0963i F
0963 F
" 1-0.963i F

plot mag, phase, 0-20 MHz

For the specified value of the “springiness” constant given in the problem statement,
here are the explicit values of the transmission and reflection coefficients as a
function of frequency, as measured in MHz.



>> f = linspace(0, 20, 500); 0.9

>> T = 1./(1-0.963%*f); 0.8
0.7
>> R = 0.963**f./(1-0.963**f); 06
>> plot(f, abs(T)) T 05
0.4
0.3
0.2
0.1

0 2 4 6 8 10 12 14 16 18 20
f (MHz)

>> plot(f, abs(R)) g.:

0.7
0.6
R 0.5
0.4
0.3
0.2
0.1

If we plot the magnitude of the transmission and reflection coefficients versus
frequency, we see the behavior shown here.



90

>> plot(f, (180/pi)*angle(T)) 80
70

60

50

T 40

0 2 4 6 8 10 12 14 16 18 20
f (MHz)

>> plot(f, (180/pi)*angle(R)) 180
160

140

120

R 100

80

60

40

20

0 2 4 6 8 10 12 14 16 18 20
f (MHz)

Here are the corresponding phases (in degrees).



Rough Crack, part (b) reference waveform

>> [ve,vr,t] =rough_crack();

0.4
>> plot(t_shift(t, 100),c_shift(vr,100)) 03
0.2
0.1

-0.1
-0.2
-0.3

V47 0 1 2 3 4 5
crack waveform

0.06
>> plot(t_shift(t,100), c_shift(vc,100)) oo

0.02

The Matlab function rough_crack gives a simulated waveform signal after it has
passed through a rough crack, vc and a simulated reference signal with the crack
absent, vr. Note that the amplitude of the wave that has passed through the crack is
much smaller in amplitude.



>> dt = (2) - t(1)

dt=0.0100 0.05
0.045
0.04
>> Vrf = FourierT(vr, dt); 0.035

0.03
>>f =s_space(0, 1/dt, 512); 0.025

>> plot(f(f<20), abs(Vrf(f<20))) OO;Z‘S
0.011
0.005r

reference spectrum

0 2 4 6 8 10 12 14 16 18 20

crack spectrum

>> V/cf = FourierT(vc, dt); 7
>> plot(f(f<20), abs(Vcf(f<20)))

0 2 4 6 8 10 12 14 16 18 20

Here are reference and rough crack spectra.



The transfer function ( no filter)

>> T =Vcf./Vrf;
1
Warning: Divide by zero. IT|
0.8
>> plot(f(f<20),abs(T(f<20))) 06
0.4
0.2

%9 2 4 6 8 10 12 14 16 18 20

with Wiener filter 0.35
>> T = Wiener_filter(Vcf, Vrf, .001); 00235
>> plot(f(f<20), abs(T(f<20))) T o2
0.15
0.1

0.057

002468101214161820

Since we expect vc(f) = T(f) * vr(f), in principle we can get the transmission
coefficient by direct division (deconvolution). Since there is essentially no noise in
these simulated signals we can do the direct division, but in practice we should use
a Wiener filter. Both cases are shown here. We see the Wiener filter produces a
result similar to the straight division case, but only over the frequencies where the

values are not small.



Simple fit — match at one frequency (not a good idea in general)

1

T)=——
=irer
>>1(50) 1+C2(9.5703)" =1/(0.1428)°
ans = 9.5703
+> abs(T(50) C=0.724 actual value was C = 0.723 pusec
ans = 0.1428

~ ﬂ(pcp) ~ 71(46><106)kg/m2 —sec
e T 0.724 usec

~199.6x10° &
m —S€C

=199.6x10" Pa
m

=199.6 MPa/ um actual value was « = 200

Since we known the form of the transmission coefficient, one way to estimate the
springiness constant is to simply match the known form to the measured value
somewhere within the bandwidth of the results where the Wiener filter is essentially
equal to one. Here we chose a frequency of about 9.5 MHz. We see the predicted
value of the springiness constant matches well the actual result used to generate
the simulated signals. However, in practice we would like to have a more robust way
to fit the measured results to the model-based transmission coefficient.



pick out frequency values and transmission coefficient values
from approximately 6 to 14 MHz:

>> f(35)
ans =6.6406
>> f(75)
ans =14.4531 02
>> ff=f(35:75); 015
>> Tff =T(35:75); 01

0.35
0.3

0.25

. . R |
0 2 4 6 8 10 12 14 16 18 20

0.05

0

For large ' the magnitude of the transmission coefficient looks like

1
-5
o
Let |T| =y, 1/f=x, 1/C = a then this looks like a straight line
y = ax

A better way to proceed is to fit results over a range of values. Here, we choose the
frequency values from about 6.6 MHz to 14.5 MHz, and note that at high
frequencies the transmission coefficient has a much simpler behavior that we can
use to express the transmission coefficient fitting as a problem of fitting the data to
that of a straight line.



X y | first order (linear) polynomial

>> p = polyfit(1./ff, abs(Tff), 1) polynomial fit of y = ax + b

p= 1.3392 0.0030 a, b

>> C= 1/p(1) [

C= 0.7467 actual value was C = 0.723 pusec

should be zero

o xlee,)
K
or _ ﬂ(pcp) _ 7r(46><106)kg/m2 —sec
C 0.7467 psec

~193.5x10° "8
m —SecC

=193.5x10" Fa
m

=193.5 MPa/ um actual value was « = 200

Matlab has a built-in function polyfit that allows us to do the linear fitting we need
over this range of frequencies. We see the results are still quite good in comparison
the actual springiness value even though we only used the high frequency behavior
of the transmission coefficient in the fitting procedure.



S.2 When a P-wave strikes a stress-free planar interface of an elastic
solid, both reflected P-waves and SV-waves are generated:

reflected SV

‘HZ / reflected P

incident P

The MATLAB function stress_freeP can be used to obtain the reflection
coefficients (based on velocity ratios) for these reflected waves. The
polarizations of these waves (i.e. the assumed directions of the velocity)
are shown by the black arrows.

(a) plot these reflection coefficients versus the incident angle for angles
from 0 to 90 degrees). Justify the values you obtain for these reflection
coefficients when the incident angle is zero.



The mode conversion present in this free surface interaction can be
used to generate an SV-wave traveling normal to the surface of a
component that is being inspected by using a P-wave transducer and a

wedge as shown:

— Note: interface needs shear-
transmitting couplant

(b) Determine the wedge angle, 0, that is needed to generate a normally
incident SV-wave if the wedge is made of aluminum.

(c) Determine the amplitude, A, of velocity of the SV-wave transmitted
into the component being inspected if the component is made of steel.
Assume the incident P-wave amplitude is unity and assume perfect
contact between the aluminum wedge and the steel. Use plane wave
relations to determine A even though the transducer does not generate
purely plane waves.



Prob S.2

reflected SV

'ﬁ[ / reflected P

incident P

8

. Up

This problem considers the reflection of a plane P-wave off a free surface,
where reflected plane P- and SV-waves are generated.



>> plot(ang, rp)
>> hold on
>> plot(ang,rs, "--'

at normal incidence there is
no mode conversion and the
velocity of the reflected P-
wave is equal to that of the
incident P-wave at the free
surface. The sign is negative
since the velocity of the
reflected wave is opposite to
the direction of propagation.

||

>> [rp, rs] =stress_freeP(ang, 6420, 3040);

-0.1
02t

sl W
-04 \
-05 \
06+ \\
07t %
08}

Vo

reflection coefficients

\
%\ S-wave

09}

If we generate angles from 0 to 90 degrees and use them in the stress_freeP
function we get the reflected wave amplitudes shown plotted here. At zero
degrees (normal incidence) there is no mode conversion so the reflected shear
wave coefficient, rs, is zero. The reflected SV-wave amplitude is -1 since at a
free surface the incident velocity (or displacement) amplitude is just doubled,
but the direction of the reflected SV wave is opposite to that of the incident

wave so its amplitude in its propagating direction must be -1.




(b)

C'p C,
s

P
o ~ -
N sin@ sin(z/2-6) c
svii P i =
2

o

for aluminum
tan6 = 6420/3040

giving 0 = 64.66°

For an incident P-wave reflecting off the Al wedge, the geometry shows that to
get a reflected SV-wave traveling normal to the base of the wedge we must
have the angle 6 to be about 64.7 degrees. This is the angle of the wedge and
also the angle the incident P-wave makes with the inclined wedge surface.



()

>> ang =64.66;
>> [rp,rs] = stress_freeP(ang, 6420,3040)
rp = -0.4991 /10

rs = -0.8666 Se—P
> 0.8666 /.. gv

minus sign means
polarization is as shown

2o, (2)(2.7)(3040)

T =
pica+ paes  (2.7)(3040)+(7.9)(3200)

=0.49

A = (0.49)(0.8666) =0.425

We can use stress_freeP to get the SV-wave amplitude, which is negative,
since the polarization of the SV-wave is opposite to that assumed in deriving
the reflection coefficient. If we calculate the transmission coefficient for the Al-
steel interface at normal incidence, assuming perfect welded contact, we get
an amplitude of the SV-wave traveling at normal incidence to the steel surface
of about 43 percent of the original incident P-wave amplitude.



S.3. A plane wave travels 100 mm in a material to a point where its
amplitude is P, . After the wave travels through an additional 100 mm of
material its amplitude is reduced to P, = 0.35 P,. What is the average
attenuation of this material in dB/m ?



S.3

b P,=0.35F, = Rexp(-ad)
T/ =

\ |

\ \

100 mm d =100 mm
P
AP, =20log,, (—Zj
’ B
=20log,,(0.35)
=-9.12dB
attenuaton @, = [AZ| :%:912 dB/m

Qigim :8‘686aNp/m = Pnpim = 10.5

Here, we are determining the average attenuation of a plane wave by examining the
change in amplitude of the wave over a given distance. We can express the result in
terms of decibels/unit length or in Nepers/unit length.



S.4. A transducer beam spreads as it propagates. In the far-field of the
transducer this spreading is just like that of a spherical wave, i.e. it varies
as 1/r, where r is the distance from the transducer. At a distance of 100
mm from the transducer the amplitude of the pressure is P,. After the
beam has propagated an additional 100 mm the amplitude is reduced to
P, =0.35P,. What is the average attenuation of the material in dB/m ?




S.4 p
P, =035P =P| L |exp(-ad
! T | 1 ](’”2] ( )
— ) /¥ [h
Va— w
100 mm d =100 mm
p
geometric spreading & _ n (APdB )spreading =20log, (r_lj
of a spherical wave P s 2
1
=20lo 100
total amplitude change B0 200
|AP,| =20l0g,,(0.35)=9.12 dB =-6.02 dB
AP, —|(AP, ) —
attenuation  «,,, =| i |( i) J2127602 3y g ym
d 0.1
Cagim :8‘686aNp/m = Enpim =3.57

In problem S.3 we examined the attenuation of a plane wave, where amplitude
changes were only due to attenuation . Here, for a spherical wave there are
amplitude changes due to both wave spreading and attenuation, so we must account
for and remove the wave spreading. In this case we see that the beam spreading
produces a 6 dB drop in amplitude, so we must subtract off this 6B part from the total
amplitude change.



S.5. Consider a harmonic plane P-wave traveling in water at room temperature.
Determine an expression for the distance (as a function of frequency) that this
wave must travel to reduce its amplitude by 10% due to attenuation. Plot this
function for f =1 MHz to f = 20 MHz.



55 P=PRexp(-ad)=09F,

—> J :_11’1(0.9)

For water at room temperature

a=253x10°f>  Np/mm

f-.. frequency in MHz

From the amplitude expression for changes due to attenuation of a plane wave we
can determine the distance that must be traveled to reduce the amplitude by 10
percent. But for water we know the attenuation as a function of frequency so we
know the distance that must be traveled also as a function of frequency.



Y%attenuation_script
clear

f =linspace(1, 20, 200);
alpha = (25.3E-03)*f.%2; % f in MHz, alpha in Np/m
d =-log(0.9)./alpha ; %distance in meters

plot(f, d)
xlabel('frequency, MHZz')
ylabel('distance, m')

4.5
4t
3.5

[
W

distance, m
|39

0 2 4 6 8 10 12 14 16 18 20
frequency, MHz

This Matlab script uses the relations of the previous page and plots the distance
traveled in meters versus frequency. As expected, for higher frequencies, we do not
need to travel as long a distance to have a 10 percent change in amplitude.



PrsCp P2>Cp25Cs2

-

p

Fig. 5.5. An ultrasonic pulse-echo calibration setup where the waves generated by
a circular, planar, piston transducer are reflected from a plane fluid-solid interface
at normal incidence and the reflected waves are received by the same transducer.

attenuation of water:

a,(/)=253x10" /> Np/mm (5.21)
where f'is the frequency in MHz.

t,(®)=D,(k,a* | 2D)R,, exp(2ik,D)exp[ 2a,,(f) D] (5.22b)
where

D, (u)= 2[1—exp(iu){J0 (u)—iJ, (u)}]

5.1 Using Egs. (5.21) and (5.22b) write a MATLAB function t_a that
computes the acoustic/elastic transfer function for the pulse-echo setup
shown in Fig. 5.5, where the fluid is water at room temperature. The
calling sequence for this function should be:

>>t=t_a(f, a, d, d1, d2,c1,c2);



where f is the frequency (in MHz), a is the radius of the transducer (in
mm), d is the distance from the transducer to the plane surface (in mm), d1
is the density of the fluid (in gm/cm®), c1 is the compressional wave speed
of the fluid (in m/sec), d2 is the density of the solid (in gm/cm?), and ¢2 is
the compressional wave speed of the solid (in m/sec).

Using this function, obtain a plot of the magnitude of this transfer
function versus frequency for a = 6.35 mm, d = 100 mm, d1 = 1.0 gm/cm’,
cl = 1480 m/sec, d2 = 7.9 gm/cm®, c2 = 5900 m/sec (steel). Let the
frequencies range from 0 to 20 MHz. On the same plot, show the
magnitude of this transfer function versus frequency when the attenuation
of the fluid is neglected, so that the effects of attenuation on this function
can be demonstrated.



Prob 5.1

functiony =t_a(f, a, d, d1, d2, c1, c2)

%t_a (f, a, d1, d2, c1, c2) calculates the acoustic/elastic

Y%transfer function for the reflection of the wave field off a

% planar surface of a solid at a distance d (in mm) from a circular
% immersion piston transducer of radius a (in mm). The frequency,
% fis in MHz and the densities of the fluid and solid (d1, and d2),
% are in gm/cm”3. The wavespeeds c1, c2 of the fluid and solid,
% respectively, are in m/sec. The phase term exp(2*i*k*d) in

% this transfer function is omitted.

ka = 2000*pi*f*a./c1;

a2d = a/(2*d);

R12 = (d2*c2 -d1*c1)/(d1*c1 + d2*c2);

att =(25.3E-06)*f.A2; % edit out one term here for attenuation
% att =0.;

u = ka.*a2d;

D = 2.*(1-exp(i.*u).*(besselj(0,u) - i.*besselj(1, u)));

y= R12.*D.*exp(-(2*d)*att);

Here is the Matlab function for the calculation of the transfer function (without the
phase term) when attenuation is present. To simplify the function the zero
attenuation case is obtained by editing the function so that the attenuation, att, is
zero, saving it, and then re-evaluating the function.



>> f =linspace(0,20, 500);

>>t=t_a(f, 6.35, 100, 1.0, 7.9, 1480, 5900);
>> plot(f, abs(t))

>> hold on

>> % edit function to make attenuation term zero, save and then evaluate

again:

>>t=t_a(f, 6.35, 100, 1.0, 7.9, 1480, 5900);

>> plot(f, abs(t), --') 18
161

In this case: al ~

R12 = 0.9384 12} \~—-\‘~

purely plane wave result: = \\\

t_a |= constant =(2)(R12) = 1.88 o .
0.6 \\‘
0.4 ‘-\\~
0.2 *.’

I . . I . . . . .
0 2 4 6 8 10 12 14 16 18 20
frequency, MHz

Here is the evaluation of the acoustic/elastic transfer function in the two cases. We
also show the case where the transfer function is calculated for a purely plane wave
(without attenuation) to show what happens when we both neglect attenuation and
wave diffraction effects. The factor of two is present in the plane wave result because
the transfer function is calculated with the blocked force on reception, which is twice
that of the force in the reflected wave which is received. Obviously, both diffraction
effects and attenuation are important here, as they are for most ultrasonic NDE
problems.
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Fig. 6.15. A circular piston transducer of radius a receiving the waves reflected
from the front surface of a spherical reflector located on the central axis of the
transducer.

a, =222, - (6.14)

6.1 The MATLAB function transducer x(z) returns the time-domain
sampled voltage received from a spherical reflector in water
(c = 1480 m/sec) located at a distance z (in mm) along the axis of a planar
transducer as shown in Fig. (6.15). There are 1024 samples in this
waveform, each separated by a sampling time interval At =.01 usec. First,
let z be the vector of values:

>> z = linspace (25, 400, 100);
Use this set of values in the transducer_x function, i.e. evaluate
>>V = transducer_x(z);

The matrix V will contain 100 waveforms calculated at each of
these z-values. Use FourierT to generate the frequency spectra of these
waveforms. Note that FourierT can operate on all of these waveforms at
once as long as they are in columns (which is the case) and will return a
matrix of the corresponding spectra, also in columns. Examine the
magnitude of some of these spectra versus frequency to determine the
range of frequencies over which there is a significant response. Pick one
frequency value near the center frequency in this range and plot the
magnitude of the spectra at that value versus the distance z.



Locate the last on-axis minimum in this plot and use Eq. (6.14) to
determine the effective radius of this transducer. Try using a different
frequency value within the transducer bandwidth to determine the effective
radius. Does your answer vary with the frequency chosen?



Prob 6.1

>> z = linspace(25, 400, 100);
>>V = transducer_X(z);

>> dt=0.01;

>> Vf = FourierT(V, dt);
>>f=s_space(0, 1/dt, 1024);
>> plot(f, abs(Vf(:, 1)))
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Here we generate a series of 100 z-values for a small sphere placed on the axis of an
immersion transducer and evaluate the function transducer_X which models the 100
received sampled voltages versus time received by a planar piston transducer. The
sampling interval is 0.01 microseconds. We can compute the Fourier transform of all
100 signals with FourierT and set up the appropriate sampled frequencies with
s_space. We can plot the magnitude of any of spectra. Here, we arbitrarily choose to
use the very first spectra (obtained from z = 24 mm). We see both the positive and
negative frequencies and we see that most of the frequency content is centered
around 5 MHz.



this spectrum corresponds to the following waveform:

>>t=s_space(0, 10.24, 1024);
>> plot(t, V(:,1)) o

we need to shift this to see waves clearly 04

>> plot(t_shift(t, 100), c_shift(V(;,1)’, 100)) & 4 s 3w w

1
I 08
06

turn into row vector 04

this is in the very near field so we can
see the direct and edge waves Al

If we examine the waveform from this first spectra by generating an appropriate set
of sampled times with s_space, we see the signal appears in the lower and upper half
of the time domain plot since the signal has values for negative times which show up
in the upper half of the time plot. To better see the signal we can use the functions
c_shift and t_shift, which shows us the waveforms more clearly. Note that since the
waveforms are in columns, before using c_shift we need to place the waveformin a
row vector. We see there are two waves appearing here, which are the direct and
edge waves coming from the piston transducer. We can see them separately here
because we are very close to the transducer.



If we had chosen a point at a much larger
distance, the direct and edge waves would
“merge”:

>> plot(t_shift(,200) , c_shift(V(:,90), 200))

051

-0.5F

If we had examined one of the waveforms, as shown here, at a much larger distance
from the transducer, the direct and edge waves merge into what looks like a single
response.



and the spectrum would look like:

plot(f, abs(Vf(;,90)))

0 10 20 30 40 50 60 70 80 90 100

The magnitude of the spectrum of the signal at this larger distance is as shown. There
is much less ringing in the frequency domain from the spectrum of the first choice
since such ringing is caused here by the presence of two signals (the direct and edge
waves) separated by a time At, and as At gets smaller the ringing gets less
pronounced. Here, we can see more clearly the bandwidth of the signal.



Now, find a good frequency component value to plot versus z:

>> find( abs(Vf(:,1)) == max(abs(Vf(:,1))))

ans = 55 971
>> f(55) 025
ans =5.2734

0.2
>> vp = Vf(55,:);
>> plot(z, abs(vp))

0.15

011

Now, let’s go back to the magnitude of the spectrum for out first choice of signal and
compute the value of the frequency at the maximum frequency response. We see we
get two values because of the presence of the negative frequencies, so we choose
the smaller value which we see is at a positive frequency of about 5 MHz (which is
consistent with what we expected). If we plot the magnitude of the frequency
response versus z we see the on-axis response discussed in the notes, where there
are rapid variations in the near field, followed by a monotonic decay as we go to the
far field.



>> find( abs(vp) == min(abs(vp)))

ans =24

>> 2(24)

ans =112.1212

>> aeff = sqri(2*1.48*2(24)/f(55))

aeff =7.9331 mm

We can try to find the last minimum of the on-axis response, which we see here
occurs at about 112 mm, which is consistent with the plot seen on the previous slide.
We can use this minimum location and the frequency to calculate an effective radius
for the transducer.



>> f(60) 025

0.2

ans =5.7617

>> vp = Vf(60,:);
>> plot(z, abs(vp))

01

0.05

>> find( abs(vp) == min(abs(vp)))

ans =27 o

>> 7(27)
ans =123.4848

>> aeff = sqrt(2*1.48*z(27)/f(60))
aeff = 7.9648 mm

If we had chosen a somewhat larger frequency of about 5.8 MHz (but still well within
the bandwidth of the signal) and plotted the on-axis frequency response, we can
locate the last on-axis minimum, as before, and calculate an effective radius, which is
within a few percent of our previous value.
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Fig. 7.2. Reference experiments that can be used to determine the system function
or system efficiency factor where circular planar transducers are involved: (a)
reflection from a plane front surface of a block at normal incidence, (b) reflection
from the back surface of a block at normal incidence, (¢) reflection from an on-
axis flat-bottom hole at normal incidence, (d) reflection from an on-axis solid
cylinder at normal incidence, (e) reflection from an on-axis side-drilled hole at
normal incidence, and (f) two transducers (not necessarily the same) whose axes
are aligned.

7.1 The beam of a planar immersion transducer is reflected off the front
surface of a steel block (see Fig. 7.2 (a)) and this reference signal can be
used to determine the system function. The file FBH ref contains a
sampled reference signal of this type and its corresponding sampled times.
Place this file in your current MATLAB directory and then load it with the
MATLAB command



>> load(' FBH_ref")

This command will place in the MATLAB workspace 1000 sampled time
values in the variable t ref, and a 1000 point reference time domain
waveform in the variable ref. Plot this waveform. Take the FFT of this
reference waveform and keep only the first 200 values of the resulting
1000 point spectrum (from 0 to 20 MHz) in a variable, Vc. Plot the
magnitude of V¢ from 0 to 20 MHz. Use Vc and the data given below to
determine the system function via deconvolution (using a Wiener filter)
and plot the magnitude of this system function versus frequency from zero
to 20 MHz. Compare this system function with Ve.  Use the
acoustic/elastic transfer function for this configuration as:

t,=2R, exp(—2ap1D)[1 - exp(ikpla2 /2D)

{4, (k,1a* 12D) -, (K, a? /21))}}

where we have dropped the phase term exp(2ika) as it only produces a
time delay and the plane wave reflection coefficient is:
Pl — PGy

R, =
PrC,n T PIC,,

The parameters for this setup are:

p,=1.0, p, =7.86: density of the water and steel, respectively (gm/cm?)
¢, =1484,c,, =5940: P-wave speeds of the water and steel, respectively
(m/sec)

a, =24.79x 10°° £* : water attenuation (Np/ mm) with f the frequency (in

MHz)

D =50.8: distance from the transducer to the block (mm)
a = 6.35: radius of the transducer (mm)

e =0.3: noise coefficient for the Wiener filter

Note that the Bessel functions are available directly in MATLAB. The
Bessel function of order zero, J,(x), is given by the MATLAB function

BesselJ(0, x) and the Bessel function of order one, J, (x), is given by the
MATLAB function BesselJ(1, x).



7.1 System Function
0.8

>> load('FBH_ref') 0.6}
>> plot(t_ref, ref)
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If we load the flaw FBH_ref we obtain a series of sampled times, t_ref, and the values of the
measured time domain signal, ref, we receive when the transducer beam is reflected off
the front planar surface of a block, as shown. This is a simple configuration where we can
model the acoustic/elastic transfer function and hence obtain the system function by
deconvolution.



>>dt =t_ref(2) -t_ref(1)

dt =
0.0100

>> Vf =FourierT(ref, dt);
>> Ve=Vf(1:200); 0.14
>> f =s_space(0, 1/(5*dt), 200);
>> plot(f, abs(Vc))

0.1+
volts/MHz %91
0.06
0.04

0.02

frequency, MHz

To compute the Fourier transform we need the sampling time interval, which shows that a
100 MHz sampling frequency was used here. If we compute the first 200 of the 1000
corresponding sampled frequencies we will obtain the frequency response from 0 to 20
MHz, approximately, contained in the Vc function. We see that most of the frequency
content of the signal is between, say, 1 and 8 MHz.



a
% sys_function_script
clear
d1 =1.0;
d2 =7.86;

c1=1484; I
2 =5940; D

D=50.8;

a =6.35;

e =0.03;
load('FBH_ref')

dt = t_ref(2) -t_ref(1);
Vf =FourierT(ref, dt);
Veitizooy V) =s(()

t,=2R, exp(—ZaplD)

.[1 —exp(ik,a*/ D) {J, (k,,a* 1 D)~ i, (k, a* /D)}J

_ PrCp — P,

RIZ -
PrCpy T PICpy

Here is a Matlab script, sys_function_script, that calculates the system function. On this
page we see the script generates the given values for the parameters in this problem which
are the densities of the two media, their P-wave speeds, the distance to the front surface,
the radius of the transducer, and the noise constant e we will use in the Wiener filter. We
load the measured signal, ref, and time axis, t_ref, and compute the frequency
components, Vc, from 0 to 20 MHz, approximately.



f=s_space(0, 1/(5*dt), 200); ka=2rfalc

alpha = (24.79E-06)*f.A2; 27z(f>< 106MHZ)(a mm)
atten =exp(-2*D*alpha); =
R12 =(d2*c2 -d1*c1)/(d2*c2 +d1*c1); (c m/sec)(103mm/m)
kp1a =2000*pi*a*f./c1;
r=a/(2*D); =20007x fa/c
x=r*kp1a;
ta=2"R12*atten.*(1 -exp(i*x).*(BesselJ(0,x) -i*Besseld(1,x)));
s=Wiener _filter(Vc, ta, e);
plot(f, abs(s)) 0.09
0.08[
0.07f
sCHl %
voltsyMHz 0.05
0.04f
(D)=s(Nul) 2
0.02
_ V.t 0.01
LR 2 2 0 ‘ ‘
|tA| +e maX(|tA| ) 0 2 4 6 8 10 12 14 16 18 20

frequency, MHz

The script continues by generating the appropriate sampled frequencies and computes the
attenuation factor for the water. The value of the reflection coefficient and the
nondimensional wavenumber, kpla, for the water are evaluated, as well as a non-
dimensional radius, r, as these can be used to generate the expression for the
acoustic/elastic transfer function (see the next slide for the behavior of the transfer
function). The function Wiener_filter is then used to do the deconvolution of the spectrum
of the measured signal with this transfer function and the magnitude of this system
function is plotted versus frequency.



>> plot(f, abs(ta))

[ tal

0.5[

0O 2 4 6 8 10 12 14 16 18 20

frequency, MHz

Here is the plot of the magnitude of the acoustic/elastic transfer function.



p(z,0) = pev, (a))[exp(ikz) - exp(z’k\/ 2 +ad )} (8.20)

—iwpa*v, (@) exp(ikz
p(z.0)= p2°() pg ), (8.21)

8.1 The exact on-axis pressure for a circular piston transducer was given
by Eq. (8.20) and the far field approximation for this same pressure was
given by Eq. (8.21). Using MATLAB, write a script that computes these
two pressure expressions and plots the magnitude of the normalized
pressure, p/ pcv,, versus the normalized distance, z/ N, for both of these

expressions on the same plot, where N is the near field distance. Let the
transducer radius a = 6.35 mm, the frequency f'= 5 MHz, and the wave
speed of the fluid ¢ = 1480 m/sec. Show both pressure plots over the range
z/N=0.2 to z/N =4.0. What can you conclude about when Eq. (8.21) is
valid?



8.1 Comparison of on-axis pressure and far-field form

- z

= exp(ikz) —exp(ik 2 +a’ )

pev,
= exp (ika (z/a))[l - exp(ika {\/m —z/ a}ﬂ
p ika® exp(ikz) P azf
pev, 2z Near field distance N = =
__tha exp(ika(z/ @)

2 zla

Here are the exact and far field on-axis responses of a circular piston transducer. Note that
the near field distance, N, used here is an approximate expression for the exact near field
distance but one that is good for most NDE applications.



% onaxis_nf_ff script

clear

f=5; %frequency (MHz)

a=6.35 % transducer radius (mm)

¢ =1480; % wave speed (m/sec)

ka = 2000*pi*f*a./c; % ka value

N = 1000*(a’2)*f/c; % near field distance (mm)

zN = linspace (0.2, 4, 500); %normalized distance z/N

z=zN.*N; % actual on-axis distance (mm)

zn = z/a; % normalized on-axis distance, z/a

pe = 1 -exp(i*ka.*(sqrt(zn."2 +1 )-zn)); %on-axis normalized pressure
% with exp(ikz) term removed

pff = -i*ka./(2*zn); % far field pressure with exp(ikz) term removed

plot(zN, abs(pe),'b")
hold on

plot(zN, abs(pff), 'r--")
hold off

xlabel('z/N'")
ylabel('|p/Arhocv_0]')

Here is the Matlab script to compute the exact on-axis pressure, pe, and the far-field on-
axis pressure, pff. The factors of 2000 and 1000 in the ka and N expressions appear because
of the mixture of units of the wave speed, radius, and frequency that appear in these
expressions (examine them more carefully yourself).



far field expression (spherical wave)
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Here are the plots. The two expressions are close for distances greater than the Rayleigh

distance, which is defined as ma2/A. Thus, the expressions agree for distances about three
times the near field distance.



J, (kasin @) exp(ikR)
kasin @ R

p(x,0)=-iopa’v, (o) , (8.31)

8.2 Equation (8.31) shows that the angular distribution of the far field
radiation field of a circular planar piston transducer is controlled by the

directivity function J,(kasin®)/(kasing). Using MATLAB, write a

function that calculates the angle where the amplitude of this directivity
function drops by 6 dB from its maximum on-axis value. Use this function
to determine the 6 dB angular spread of a 0.5 inch diameter piston
transducer radiating into water at frequencies of 2.25, 5, and 10 MHz.



8.2 Far field Directivity function of a piston transducer of radius a

J, (kasin@)/kasin 6

IS

Let u = ka sin(0)

0.45
047
0.357
037
-6 dB point .25
0.2
0.15
017
0.057

Jy(u)u

Shown is the directivity function that defines the far field angular behavior of a
circular piston transducer. We can see when the amplitude is 2 of the
maximum value of 0.5 we have the corresponding u value. From that u value
we need to determine the actual corresponding angle.



% directivity_script

u = linspace(0, 10, 1000);

u=u+eps*(u==0);

dir =besselj(1, u)./u;

plot(u, abs(dir)) % examine the directivity function dir = J1(u)/u

ind = min(find(dir <=0.25));

arg =u(ind); % find smallest value of u= kasin(theta) where amplitude is < 6 dB
% down from max

a =6.35; % radius (mm)

f =input( 'give frequency in MHz ');

c=1480; % wave speed (m/sec)

ka=2000*pi*f*a/c;
theta = asin(arg/ka)*180/pi % solve for theta (deg) at - 6 dB point

Here is the directivity script that calculates the angle of spread at the -6dB
point. First the directivity is evaluated in terms of the non-dimensional quantity
u = kasin®, which is then plotted (the plot seen on the previous page. Then we
examine all values of the directivity less than or equal to 0.25. The smallest of
these directivities will then be the nearest value where the 0.25 (-6 dB) value
occurs and the value of u at the same index value will be the value of u we
seek. If we give a value for the radius, frequency (which must be entered by
the user), and wave speed (for water in this case), we can calculate the ka
value. The factor of 2000 exists in this expression because of the mixed units.
Since we know the u value and the ka value, we can then calculate the
corresponding angle.



>> directivity_script
give frequency in MHz 2.25

theta =
2.0996

>> directivity_script
give frequency in MHz 5

theta =
0.9446

>> directivity_script
give frequency in MHz 10

theta =

0.4723

Here is the directivity for different frequencies entered by the user. Note that all
of these angles are very small so the beams of such NDE transducers are
highly directional and we say the beam is well-collimated.



Now see what happens if we change the material to steel
% directivity_script
u = linspace(0, 10, 1000);
u=u+eps*(u==0)

dir =besselj(1, u)./u;
plot(u, abs(dir)) % examine the directivity function J1(u)/u

ind = min(find(dir <=0.25));

arg =u(ind); % find smallest value of u= kasin(theta) where amplitude is < 6 dB
a =6.35; % radius (mm)

f =input( 'give frequency in MHz ');

¢=5900; % wave speed (m/sec)

ka=2000*pi*f*a/c;
theta = asin(arg/ka)*180/pi % solve for theta (deg) at - 6 dB point

It was not asked for in the problem, but let us examine the same results when
the transducer is radiating into steel. We simply change the wave speed in the
script to be the P-wave speed in steel and rerun the script.



>> directivity_script
give frequency in MHz 2.25

theta =
8.3981

>> directivity_script
give frequency in MHz 5

theta =
3.7684

>> directivity_script
give frequency in MHz 10

theta =

1.8832

Here are the corresponding angles, which are larger than when the transducer
is radiating into water, but still are small.



p(z,0)= pev, exp(ikz){i[l - exp(ikazqo / 22)]}, (8.37)

9

8.4 Write a MATLAB function that returns the normalized on-axis
pressure, p/pcv,, versus distance for a spherically focused piston
transducer (see Eq. (8.37)). The input arguments of the function should be
the distance values (in mm), the frequency (in MHz), the radius (in mm),
the geometrical focal length (in mm), and the wave speed (in m/sec). Use
this function to find the location of the true focus (i.e. the distance to the
maximum pressure) for a 12.7 mm (0.5 inch) diameter, 101.6 mm (4 in.)
focal length transducer radiating into water at 5, 10, and 20 MHz. What
can you conclude about the relationship between the location of the true
focus versus the geometrical focal length?



8.4 True focus location versus geometrical focus

R
o z
A/
_p _ M[l —exp (ika2q0 /22)J in paraxial approximation
oCv, 9,
1- kag,/2(z/
=exp(ikz) exp(ikag, /2(z/a)) q,=1-z/R

9

Here is the expression for the on-axis pressure of a spherical focused circular piston
transducer.



function p = onaxis_focused(z, f, a ,R, ¢)

ka = 2000*pi*f*a./c; % ka value
q=1-z/R; % qO0 value
zn = z/a; % normalized on-axis distance, z/a

p = (1./g)."(1 -exp(i*ka.*q./(2.*zn))); %on-axis normalized pressure
% with exp(ikz) term removed

% onaxis_focused_script
clear

z= linspace(10, 200, 500); % set up z-values well beyond geometrical focus
f= input(' frequency (MHz) = ')

a= 6.35; % radius (mm)

R =101.6; % geometrical focal length (mm)

¢c=1480; % wave speed (m/sec)

p= onaxis_focused(z, f, a, R, c); % compute on-axis pressure

pm =max(abs(p)); % find value of max pressure

ind =find(abs(p) == pm);

zgeom =R

ztrue =z(ind) %z(ind) is where max pressure is located

Here is the Matlab function requested in the problem and a script that uses that
function to find where the maximum pressure occurs (the true focus) so we can

compare it with the geometric focus location, which is just the R in our pressure
expression.



>> onaxis_focused_script
frequency (MHz) = 5

zgeom = 101.6000

o a4 N w B~ o o

ztrue = 70.5411 0 40 80 120 160 200

=)

>> onaxis_focused_script
frequency (MHz) = 10

zgeom = 101.6000

NWAOO N ®©

ztrue = 88.8176

>> onaxis_focused_script
frequency (MHz) = 20

w2222 o
SN ®O® g

zgeom = 101.6000

N Ao

o
5

40 80 120 160 200

ztrue = 97.5752

We see that at 5 MHz there is considerable difference between the true focus
location and the location of the geometrical focus and it is only until about 20 MHz (a
very high frequency in NDE testing) that the two locations are somewhat close. Here
we have also plotted the on-axis magnitude of the pressure and shown the location
of the geometrical focus relative to the true focus, which is at the maximum of these
curves.



p(z,0) = pev, (a))[exp(ikz) - exp(z’k\/z2 +a’ )} (8.20)

8.5 Equation (8.20) gives the exact on-axis pressure for a planar immersion
transducer at a single frequency. Ultrasonic NDE transducers, however, do
not normally operate at a single frequency but are driven by a voltage
pulse and hence contain a spectrum of frequencies that generate a time
domain pulse. The near field behavior of such a pulsed transducer does not
show nearly the same strong near field structure as a single frequency
model suggests.

Write a MATLAB function that computes the normalized pressure,
p/ pcv,, at a given on-axis distance at many frequencies and multiplies

this pressure at each frequency by the MATLAB function spectruml
written for homework exercise A.l. The function should evaluate this
product at 1024 positive frequencies ranging from 0 to 100 MHz and then
use the Fourier transform IFourierT defined in Appendix A to obtain the
time-domain pulse generated by the transducer at the given location.
Finally, the function should compute the peak-to-peak magnitude of this
pulse and return that value. The inputs to the MATLAB function should be
the distance (in mm), the transducer radius (in mm), the wave speed of the
fluid (in m/sec), the center frequency, fc (in MHz), and the bandwidth, bw
(in MHz).

Use this function to evaluate the peak-to peak response of a
transducer radiating into water for 200 points ranging from 10 to 400 mm
and plot this peak-to-peak response versus distance. Take the radius of the
transducer to be 6.35 mm (0.25 in.), the center frequency fc = 5 MHz and
the bandwidth bw = 2 MHz.



8.5 On-axis peak-to-peak response of a transducer

peak-to-peak amplitude

function pp =pp_onaxis( z, a, c, fc, bw) -

f=s_space(0, 100, 1024); % frequencies 0 -100 MHz

dt =.01; % sampling time interval
ka = 2000*pi*f*a./c; % ka value
zn = z/a; % normalized on-axis distance

p =1 -exp(i*ka.*(sqrt(zn."2 +1 )-zn)); % on-axis normalized pressure

yf =spectrum1(f, fc, bw).*p; % multiply by a Gaussian window

yf(1) = yf(1)/2; % this is needed when only using positive frequencies
y =2*real(IFourierT(yf,dt)); % compute time domain pulse
pp=max(y) -min(y); %find peak-to-peak value

When modeling the wave field of a transducer, we often use a plot of the on-axis
pressure at a given frequency to show the values in both the near and far field.
However, these do not reflect how the amplitude of the time domain signal of the
transducer changes, which is composed of many frequencies. Here we will calculate
the peak-to-peak amplitude of the time domain signal shown above and plot that
quantity versus on-axis distance to see how it compares with the single frequency
results. We write a Matlab function pp_onaxis which calculates The peak-to peak
value at a given on-axis distance, z.



%pp_script
clear
z= linspace(10, 400, 100);

forn=1:100
pp(n)=pp_onaxis(z(n), 6.35, 1480, 5, 2);
end
plot(z, pp)
axis([10, 400, 0, 4]) 4

We then write a script, pp_script, which evaluates the pp_onaxis function at multiple
values of z and plots the peak-to-peak response for a given transducer radius, wave
speed of the material (which is water here), center frequency, and bandwidth as
defined in the spectrum1l function. Here the center frequency is 5 MHz and the
bandwidth is 2 MHz. We do see a monotonic decay of the peak-to-peak response in
the far field due to beam spreading, as found in the single frequency case, but the
strong oscillations in the near field seen in the single frequency case have been
greatly reduced. This makes sense since the locations of the on-axis peaks and nulls in
the near field change with frequency so that when we superimpose many
frequencies to generate a pulse, the peaks and nulls tend to get “washed out”.



Consider a wider bandwidth response ( bw =4 MHz)

Y%pp_script

clear

z= linspace(10, 400, 100);

forn=1:100
pp(n)=pp_onaxis(z(n), 6.35, 1480, 5, 4);

end

plot(z, pp)

axis([10, 400, 0, 4]) 35

4
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If we keep all the parameters in the script the same but simply change the bandwidth
to 4 MHz, save the script, and rerun it, we see even less oscillation in the near field
when we have such a wide bandwidth.



F.2 Wen and Breazeale also defined 15 Gaussian beam coefficients (4,,B,)that improve on the
modeling of a circular planar piston transducer in comparison to their original 10 coefficients [F.5]. Use
the MATLAB function gauss cl5 that returns those 15 coefficients and write a MATLAB script that
obtains the normalized pressure field, p/pc,v,, for a 6.35 mm radius piston transducer radiating
through spherically curved water-steel interface (R, =76 mm) at a frequency of 5 MHz (see Fig. F.11)
and plots the magnitude of the on-axis normalized pressure versus the distance z,in the steel from z, =0

to z, = 50 mm. Modify the script and consider the same case but where R, =—76 mm.

Fig. F.11. A circular planar piston transducer radiating a sound beam through a spherically curved fluid-solid
interface.



F.2 MATLAB multi- Gaussian Beam Model
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Note: the time delay factor exp(ikpl_'l + ikP:::) is not included in this model

% prob_F2

% This script calculates the normalized

% pressure, p/p0, due to a planar piston transducer radiating at normal
% incidence through a spherically curved interface.

% This is a multi-Gaussian beam model that uses the 15 coefficients
% of Wen and Brezeale to calculate the wave field.

clear

Here is a Matlab script named prob F2 that uses a multi-Gaussian beam
model to calculate the pressure for a transducer radiating through a water-
steel spherically curved interface, a simple case but one that we can use to
show the effects of the interface curvature. The script begins by clearing the
workspace so we can define all the parameters needed in this script.



% get input parameters

f=5; %frequency (MHz)

a=16.35; % transducer radius (mm)

Fl =inf; % transducer focal length (mm)
z1=50; % path length in medium 1 (mm)

z2 = linspace(0, 50, 200); % path length in medium 2 (mm)
r=0.0; % distance from ray axis (mm)

RO =inf; % interface radius of curvature (mm)
d1=1.0; % density, medium 1 (gm/cm*”3)

d2 =7.9; % density, medium 2 (gm/cm*”3)
c¢1=1480; % wave speed, medium 1 (m/sec)
c2=5900; % wave speed, medium 2 (m/sec)

radiating through planar water-steel interface

We first input all the parameters needed for this problem. We start with a script
that considers the interface to be planar. Note that we be evaluating the
response on the axis of the transducer at multiple distances in the steel
contained in z2.



% get Wen and Breazeale coefficients (15)
[A, B]=gauss_c15;

% transmission coefficient (base on pressure ratio)
T =(2*c2*d2)/(c1*d1+c2*d2);
h =1/R0; % interface curvature

zr = eps*(f==0) + 1000*pi*(a"2)*f./c1; % "Rayleigh" distance, ka"2/2
k1= 2*pi*1000*f./c1; % wave number in medium 1

use 15 coefficients

Here we use the 15 Wen and Breazeale coefficients and define the plane
wave transmission coefficient, the interface curvature, Rayleigh distance, and
wave number in the water.



%initialize pressure to zero
p=0;

%multi-Gaussian beam model
for j=1:15 % form up multi-Gaussian beam model with
% 15 Wen and Breazeale coefficients

b =B(j) + i*zr./Fl; % modify coefficients for focused probe

q=2z1-i"zr./b;

K=q.*(1-(c1/c2));

M= (1 +K.*h);

ZR=q./M,

m = 1./(ZR +(c2/c1).*z2);
t1 =A()./(1+ (i.*b./zr).*z1);
t2=11.*T.*ZR.*m;
p=p +t2.*exp(i.*(k1./2).*m.*(r.*2));

end

We initialize the pressure to be zero and then calculate the Gaussian beam
response for all the z2 values at each of the 15 coefficient values and add
them up. Note that we have a planar transducer here so that the transducer
focal length, FI = inf, is not needed for the planar transducer cases we will

consider here. This multi-Gaussian beam model can be written very compactly.
Here we have separately combined a number of terms (such as q, K, M, ZR,
zr) to write the final Gaussian beam expression, which is in terms of only the

t2, k1, and m expressions.



%plot magnitude of on-axis pressure
plot(z2, abs(p))

xlabel('z2-axis")
ylabel('|p|/|pof’)

>> prob_F2

Ip/pol
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Finally, the script plots the magnitude of the on-axis pressure in the steel.
Running the script then produces the plot shown



% get input parameters

f=5; %frequency (MHz)

a==6.395; % transducerradius (mm)

Fl =inf; % transducer focal length (mm)
z1=50; % path length in medium 1 (mm)

z2 = linspace(0, 50, 200); % path length in medium 2 (mm)
r=0.0; % distance from ray axis (mm)

RO = 76; % interface radius of curvature (mm)
d1=1.0; % density, medium 1 (gm/cm”3)

d2 =7.9; % density, medium 2 (gm/cm”3)
c1=1480; % wave speed, medium 1 (m/sec)
c2=15900; % wave speed, medium 2 (m/sec)

defocusing interface

Now we change the radius of the interface to be 76 mm and save the script.



Ip/pol
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defocusing interface

When we rerun the script we see that the amplitude in the steel has been
reduced. Because of this behavior we say that this is a defocusing interface.



% get input parameters

f=5; %frequency (MHz)

a==6.395; % transducerradius (mm)

Fl =inf; % transducer focal length (mm)
z1=50; % path length in medium 1 (mm)

z2 = linspace(0, 50, 200); % path length in medium 2 (mm)
r=0.0; % distance from ray axis (mm)

RO =-76; % interface radius of curvature (mm)
d1=1.0; % density, medium 1 (gm/cm”3)

d2 =7.9; % density, medium 2 (gm/cm”3)
c1=1480; % wave speed, medium 1 (m/sec)
c2=15900; % wave speed, medium 2 (m/sec)

focusing interface

Now, lets make the radius of the interface be minus 76 mm and save the
script.



focusing interface

In this case we see the amplitude response has been increased from the
planar interface case so we say that this is a focusing interface.



F.3 Rewrite the scripts of problem F.2 so that they display a 2-D image of the magnitude of the
normalized pressure (i.e. normalized pressure versus ( P2, zz)) in the steel for both the defocusing and

focusing interfaces considered there.



F.3

% get input parameters
f=25;

a=06.35;

Fl =inf;

z1 =50;

z2t = linspace(0, 100, 200);
r2t =linspace(-20,20,100);
[z2, r] = meshgrid(z2t, r2t);
RO = inf;

d1=1.0;

d2 =7.9;

c1=1480;

c2=135900;

replace plot with

image(z2t, r2t, abs(p)*50)

Can modify the same script to generate an image of the wave field

%frequency (MHz)

% transducer radius (mm)

% transducer focal length (mm)

% path length in medium 1 (mm)
% path lengths in medium 2 (mm)
% distances from ray axis (mm)

% interface radius of curvature (
% density, medium 1 (gm/cm*”3)
% density, medium 2 (gm/cm*”3)
% wave speed, medium 1 (m/sec)
% wave speed, medium 2 (m/sec)

mm)

We can reuse the script of problem F.2 if we simply change the inputs so we
are generating the multiple (r, z) values in matrices which can be used to
generate an image, and also replace the plot output by an image output (the
pressure has been multiplied by 50 to get a good set of colors in the images.
Alternately, you could use the Matlab function imagesc which does the scaling

automatically so the factor of 50 is not needed).




planar interface

Here is the planar interface case. We see that there is one small near-field
value in the steel along the central axis and a well collimated beam.



% get input parameters
f=5;
a=6.35;
FI =inf;

z1=50;

r2t =linspace(-20,20,100);
[z2, r] = meshgrid(z2t, r2t);
RO =76;

d1=1.0;

d2 =7.9;

c1=1480;

c2=5900;

%frequency (MHz)
% transducer radius (mm)
% transducer focal length (mm)

% path length in medium 1 (mm)

z2t = linspace(0, 100, 200); % path lengths in medium 2 (mm)

% distances from ray axis (mm)

% interface radius of curvature (mm)
% density, medium 1 (gm/cm”3)

% density, medium 2 (gm/cm”3)

% wave speed, medium 1 (m/sec)
% wave speed, medium 2 (m/sec)

Now we consider the 76 mm defocusing interface.




>> prob_F2

defocusing interface

When we rerun the script we see the wave field in the steel has spread
considerably and decreased in amplitude.



% get input parameters
f=5;
a=6.35;
FI =inf;

z1=50;

r2t =linspace(-20,20,100);
[z2, r] = meshgrid(z2t, r2t);
RO = -76;

d1=1.0;

d2 =7.9;

c1=1480;

c2=5900;

%frequency (MHz)
% transducer radius (mm)
% transducer focal length (mm)

% path length in medium 1 (mm)

z2t = linspace(0, 100, 200); % path lengths in medium 2 (mm)

% distances from ray axis (mm)

% interface radius of curvature (mm)
% density, medium 1 (gm/cm”3)

% density, medium 2 (gm/cm”3)

% wave speed, medium 1 (m/sec)
% wave speed, medium 2 (m/sec)

Now we consider the minus 76 mm focusing interface.




>> prob_F2 — —»\ .

0 10 20 30 40 50 60 70 80 90 100

focusing interface

When we rerun the script we see that the beam has been concentrated in the
steel, as we would expect with a focusing type of behavior.
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