Modeling and Measuring Ultrasonic Nondestructive Evaluation Systems

This is a course organized by Lester W. Schmerr Jr., Professor Emeritus in Aerospace Engineering at lowa
State University. The content is based primarily on the book, Ultrasonic Nondestructive Evaluation
Systems — Models and Measurements, authored by Prof. Schmerr and Prof. Sung-Jin Song, so that the
reader is encouraged to purchase this book to enhance the value of the course.

The course contains annotated Power Point Slides that have been combined into this single pdf
document that can be read on this website. The individual PowerPoints are also available for download.

Homework problems are also part of the course. The problem numbers are listed near the end of the
sections where the appropriate topics are discussed. All of the course homework problems and solutions
are available in a homework manual, which can either be read on this website or downloaded.

Matlab is used extensively in the course and homework to illustrate concepts and generate results. The
Matlab course, homework, and book m-files are also available on this website for download.

The purpose of this course is to introduce the physics and mathematics behind ultrasonic flaw inspections
so that one can understand the nature of the signals that are produced and how they are related to the
flaws present. Linear systems theory, theory of elastic waves, and Fourier analysis serve as the
foundations for much of the course. The course also covers briefly some aspects of statistical pattern
recognition and probabilistic decision-making, and neural networks.



A Personal Preface (L.W. Schmerr)

As a graduate student in the Department of Mechanics at the lllinois Institute of Technology in
the mid to late 60’s | was trained in the area of elastic waves. After graduation, | went to lowa State
University in 1969 as an Assistant Professor in Engineering Mechanics. There, | started looking for a
research area on which | could build a career. In the early 70’s | participated in an NSF summer faculty
program where | worked with the Nondestructive Testing group at General Dynamics, Fort Worth, Texas
and where | was introduced to ultrasonics as a tool to inspect materials and to find flaws. At one point
during the summer our group had a meeting with a General Dynamics corporate executive. After we
had described our work, he asked us what we actually measured in an ultrasonic test. At that point in
time | realized that there was simply not a good answer to his question and that finding one could be an
important and interesting endeavor. Subsequently, modeling ultrasonic inspections became my main area
of study which has endured to this day. In fact, this course is a snapshot of much of what | have learned
over the years as to what we actually do measure in ultrasonic NDE.

As described in this course, we now do have reasonably good models of all the elements in an
ultrasonic inspection. There were several key advances that serve as a foundation for these efforts. In
1979, Bert Auld from Stanford University developed a very general model of an inspection, based upon
electrical and mechanical reciprocity principles, that could be used, in conjunction with elastic wave
propagation and scattering models to predict ultrasonic signals received from flaws. However, while the
Auld model is very general it does not relate those signals directly to any flaw properties being measured.



In 1983, Bruce Thompson and Tim Gray at the Center for NDE, lowa State University, used the Auld model
to develop a reduced model for “small” flaws (where the incident waves could be assumed to be a constant
over the flaw geometry). This Thompson-Gray model, while less general than the Auld model, had the
major advantage of explicitly delineating the flaw scattering response as a part of the entire ultrasonic
measurement. Thompson and Gray also showed how this flaw response part (called the far field scattering
amplitude) could be obtained by measuring what they called the “system efficiency factor” (in this course a
very closely related factor is called the “system function”) in a reference experiment, and then extracting
the flaw response through deconvolution.

The Auld and Thompson-Gray models give us some general frameworks to model ultrasonic NDE
inspections but there are many questions that remain. For example, how do the individual measurement
system components (pulser/receiver, cabling, transducer(s) ) affect the measured response? What are
effective models to predict the waves generated by ultrasonic transducers? How is the far field flaw
scattering amplitude obtained from the Thompson-Gray measurement model related to the actual
geometry and material characteristics of the flaw? You will learn some answers to these and other
important questions in this course.

The three books on modeling ultrasonic NDE inspections that | have written over the last 20 or so
years can give you many of the modeling tools needed to predict flaw responses. However, the ability to
extract specific flaw information (size, shape, properties, etc.) from those responses remains an area ripe
for further investigation. Thus, at the end of this course | have included some lessons on statistical pattern
recognition and neural networks. These areas can provide powerful tools for answering many of the very
difficult questions that remain as to what we actually measure and how we can use those measurements
to make rational engineering decisions from our ultrasonic NDE inspections.



| would like to close with a few words about my career. There are three accomplishments that | would like
to highlight that | feel have contributed significantly to our understanding of ultrasonic tests. First, |
reformulated Auld’s model based on purely mechanical reciprocity principles. This is important since the
elastic wave propagation and scattering elements in Auld’s model are purely mechanical terms and by
treating them as such one can see more clearly how they are imbedded in the entire measurement
process through an acoustic/elastic transfer function. The details of this form of Auld’s model are given in
this course. | also showed how an ultrasonic transducer can be characterized as an electrical impedance
and a sensitivity and how these factors can be obtained from a set of purely electrical measurements of
the transducer in a pulse-echo setup. This greatly simplifies the previous procedures used in the acoustics
literature which relied on a complex set of measurements involving multiple transducers. These details are
also included in this course. In ultrasonic phased array inspections, one often uses those arrays to
generate flaw images. A third accomplishment is not described in this course but is described in my book,
Fundamentals of Ultrasonic Phased Arrays. There, | showed how three commonly used flaw imaging
methods -the synthetic aperture focusing technique (SAFT), the total focusing method (TFM), and the
Physical Optics Far-Field Scattering (POFFIS) method — are ad-hoc models that can be made more rational
by inverting the Thompson-Gray measurement model to obtain a “Imaging Measurement Model”. This
model explicitly describes what these images generated by ultrasonic phased arrays represent in terms of
the reflectivity and geometry of the flaws being imaged.

Although | have worked in ultrasonic NDE for many years, one of my most cited papers comes
from my work on use of hypersingular integrals in the boundary element method (Krishnasamy, G.,
Schmerr, LW., Rudolphi, T.J. and Rizzo, F.J., "Hypersingular boundary integral equations: some applications
in acoustics and elastic wave scattering," Trans. ASME, Journ. of Appl. Mechanics, 57, 404-414, (1990).)



Although this paper is not on ultrasonic NDE per se, it is related since the integral equations governing the
scattering of cracks are hypersingular. | will end by noting that is also somewhat ironic that the only paper
that | have written that has received an award is not on ultrasonic NDE but on the use of neural networks in
conjunction with eddy current inspections (American Society of Nondestructive Testing 1992 Achievement
Award "in recognition of a manuscript that represents an outstanding contribution to the advancement of
NDT" : Mann, J.M., Schmerr, LW.,, and J.C. Moulder, "Inversion of eddy current data using neural networks,"
Materials Evaluation, 49, 34-39, 1991.)

The content of the course is mostly from my second book on ultrasonics but there are many results stated
without proof in this course whose details can be found in my other two books. The references for all three
books are:

Schmerr, LW. and S.J. Song, Ultrasonic Nondestructive Evaluation Systems — Models and Measurements,
Springer, 2007.

Schmerr, LW., Fundamentals of Ultrasonic Nondestructive Evaluation — A Modeling Approach, 2™ Ed.
Springer, 2016.

Schmerr, L. W., Fundamentals of Ultrasonic Phased Arrays, Springer, 2015.
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Introduction to NDE Ultrasonic
Systems

This set of slides is a general introduction to the basic elements of an ultrasonic
nondestructive evaluation (NDE) system designed to examine materials or structures for
flaws.



Learning Objectives

familiarity with:
ultrasonic system components
ultrasonic NDE terminology

basic information on transducers
construction

types

common ultrasonic displays

We will examine the components that make up an ultrasonic NDE system and introduce
you to some of the terminology that is commonly used in the ultrasonic NDE field.

Ultrasonic transducers are an important part of any system as they are used both to
generate the ultrasound and to receive it. We will discuss some of the different types of
transducers commonly used and how they are constructed.

There are various ways in which the signals received in an ultrasonic test are presented to
the user so we will also describe some of the commonly used displays.



Ultrasonic System Components

an ultrasonic NDE immersion flaw inspection
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Here is a diagram of a basic ultrasonic NDE immersion system that uses two transducers
placed in a water bath (one acts as a sound generator and one acts as a receiver) to
examine a flawed component that is also in the water bath.

The pulser part of the system generates very short, repetitive voltage pulses (only one is
shown) that travel through a cable and excite the sending transducer which converts those
electrical pulses into pulses of sound that travel through the water and pass into the
component.

These incident waves in the component can interact with any flaws present. The flaws, in
turn, generate additional scattered ultrasound waves which in this setup are picked up by a
separate transducer and converted back to voltage pulses that travel over a cable to a
receiver where they are amplified and displayed as a voltage versus time signal on an
oscilloscope.
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This is a picture of a very basic pulser/receiver used in a lab setting. We will examine the
pulser/receiver in more detail later so here we will just note that the left hand side of the
instrument contains the controls for the pulser which include the pulse repetition
frequency and energy and damping settings while the receiver side of the instrument
contains a gain setting and filtering options. The back of the instrument (not shown)
contain connections for feeding the received signals to an oscilloscope display.



Common ultrasonic testing configurations

Pulse-echo
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The pulser/receiver can either be used in a pulse-echo setting where a single transducer
acts as both the transmitter and receiving transducer or in a pitch-catch setting where
there are separate sending and receiving transducers.



Common ultrasonic testing configurations

Through- transmission
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It is also possible to use two transducers that are directly opposite to each otherin a
through-transmission setup. In this case note that even with a flaw absent, the receiving
transducer will still be receiving a signal so that the flaw in this case acts as a modifier of
this signal that passes through the component. In the pitch-catch case, in contrast, if the
flaw is absent no signal will be received (at least from interactions with the flaw).



Digital Oscilloscope

This is a picture of a typical digital oscilloscope which is used to digitally sample the
received voltage versus time signals and display them on the oscilloscope screen. Since the

signals are stored digitally, they can also be easily transferred to a computer for further
processing.



Ultrasonic Signals

l;':f Ultrasonic A-Scan
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A voltage versus time trace on an oscilloscope display is also called an A-scan. It is the most
commonly used type of display in ultrasonic tests.

Here we see a transducer in contact with the surface of a part receiving signals from a flaw
in the component as well as a reflected signal from the back surface in a pulse-echo setup.
On the oscilloscope screen we see the received signals as well as a large negative pulse at
the start of the display called the main bang signal. This is a portion of the driving pulse
that leaks through the pulser-receiver circuits to receiving side. This large signal can hide
any flaw signals that may be present that are very close to the transducer so that there is
an early part of the display, called a “dead zone” , where evaluation of the received signals
may not be possible.



Portable Flaw Detectors

Ultrasonic NDE tests are commonly done in the field, where a portable instrument is used.
This instrument integrates the pulser/receiver and display into a single unit and provides
the capability to perform various types of evaluations via the instrument settings.



Ultrasonic System Components
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Here we see some typical ultrasonic transducers that are used in contact testing where the
transducers are placed on the surface of a part and where a thin layer of water, oil,
glycerin, or a commercially available couplant (not shown) is used to efficient couple the
transducer to the part.

The transducer consists of a piezoelectric crystal which is plated on both faces. Acting as a
transmitter, this crystal converts the electrical pulses acting on its faces into mechanical
motion of the crystal, which then propagate through a wear plate and the couplant into the
part as a traveling wave. The wear plate serves to protect the crystal from damage as the
transducer is moved on the surface. A backing made of a highly attenuating material (such
as epoxy loaded with small tungsten particles) dampens any waves traveling up into the
transducer, thus preventing significant “ringing” of the crystal and generates a short pulse
of ultrasound. There also may be some electrical components within the transducer casing
that are used to adjust its electrical characteristics and “tune” the transducer output.

The same transducer can be used as a receiver which converts the motion of waves
received into electrical signals.
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Ultrasonic System Components

Immersion Transducer
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Here we see some transducers that are used in an immersion setup.

The basic construction of an immersion transducer is very similar to a contact transducer
except the transducer usually has a UHF type of connector that is screwed into a search
tube in a scanning apparatus. Also, the wear plate is replaced by a so-called quarter wave
plate which is specifically designed to efficiently couple the crystal to a water bath. Unlike
the contact transducer, where it is difficult to maintain a constant coupling to the part as
the transducer is moved around, in an immersion setup the water provides a constant
coupling medium regardless of the motion of the transducer. Thus, immersion tests are
more reproducible than contact tests.

11



Immersion
scanning
system

Here is a basic lab-top immersion setup where a transducer is connected to a scanning
apparatus that allows the motion of the transducer to be controlled in a water tank. Much
more sophisticated scanners can control both the angles and motions of the transducer.
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Ultrasonic System Components

Focused Transducer
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A planar (unfocused) immersion transducer generates a broad beam of ultrasound.
However, if an acoustic lens is placed in front of the crystal, the sound can be focused into a
part at a specific depth.



Ultrasonic B-Scan
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In addition to an A-scan, a B-scan is a commonly used type of display. Here, the x-location
of the transducer is recorded as a transducer is moved along a line of the surface and the
time of a received signal from a reflector is converted into the corresponding depth, z. A
plot of x versus z on a display is called a B-scan. The picture on the right, for example, is a
high frequency B-scan of a composite laminate where we can see the laminates clearly.
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Ultrasonic C-Scan
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In a C-scan a transducer is scanned in two dimensions on a surface and the (x, y) location is
recorded as well as the response from any subsurface reflectors, which is usually color
coded as a function of the amplitude of the response. An example C-scan is shown of the C-
scan of a lap splice for a Boeing 727 fuselage.
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Ultrasonic System Components
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Here are the three ultrasonic NDE books published by the author (L. Schmerr) of these
notes, as well as several other commonly used general references.
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Introduction to MATLAB

This set of slides gives a brief overview of MATLAB which is used often in these
presentations to evaluate the models discussed. If you are very familiar with MATLAB you
can skip this section. There are some homework problems at the end.



Learning Objectives

familiarity with:
MATLAB operations
Simple Plotting
MATLAB functions, scripts
Complex numbers
Matrices, vectors

We will examine basic MATLAB operations, including simple plots. We will also discuss
generating MATLAB functions and scripts. Inherently we will be working with vectors and
matrices, which MATLAB is specifically designed to address, and we will be working with
complex numbers.



Here is what the MATLAB screen looks
like when you start up. (The exact layout
can be different depending on the choices
you make for the display.)

Select e to view detsl

Here is a view of what my MATLAB screen looks like. The layout can be adjusted to show or
hide various elements so your screen might not look identical to this one.
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If we generate a vector in the command window
it shows up in the workspace window

Select il to view details

We can enter commands directly in the command window. Here we are generating a vector
of 100 values ranging from zero to five. The resulting vector shows up in the workspace.
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The contents of the current folder is shown in the left window.
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editing existing files (as seen at left)
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functions or scripts
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If we select one of the m-files in the current folder, an editor window will replace the
command window and show the contents of the selected file, which is in this case the
script cantilever_d. If you click the plus sign at the upper right of the editor window it will
bring up an empty editor window that you can use to generate a new script or function.
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example of generating a plot

If you are in the editor and click the command window bar at the top, you will return to the
command window. We can do simple plotting directly in the command window. Here we
show the generation of the function y = x? in the command window, which is then plotted.



MATLAB

Built in constants and variables Some common functions

sin(x)  sine

ans most recent answer -
eps small constant ~ 1016 cos(x) ~ cosine
iorj imaginary unit exp(x)  exponential
inf infinity sqrt(x)  square root
pi 3.14159 ... log(x)  natural log
log10(x) log to base 10
abs(x)  absolute value, magnitude
of complex quantity
Standard mathematical operations angle(x) phase angle
real(x) real part of
+ addition, subtraction imag(x) imaginary part of
* multiplication
/ division
A

exponentiation e.g. y» = y”™n

There are a number of built in constants and common functions. Here are a few. Also
shown are some of the symbols used for standard operations.



Generation of (row) vectors
>> x=0:0.1:0.5

X=

0 0.1000 0.2000 0.3000 0.4000 0.5000
>> y =linspace(0, 0.5, 4)
0 0.1667 0.3333 0.5000
>> z=[12345]

1 2 3 4 5

Suppression of echoing of output (put semi-colon at end of line)

>> z=[12345];
>>

>> z

2=

1 2 3 4 5

Comment line

>> 9% This is a comment
>>

There are several ways to generate a vector of numbers. We can do this with the colon
notation seen where start: sep :end generates numbers from start to end with a separation
between values of sep. The function linspace(start, end, num) generates num equally
spaced values going from start to end.

If we do not place a semi-colon at the end of the line, the result of the operation contained
in the line will be echoed in the command widow as seen in a number of the above
examples. A semi-colon at the end of the line suppresses that echoing.

To add comments to a line, which is very helpful for explaining your calculations, they must
be preceded by the percent sign %



Functions can have vector (matrix) arguments

>> x=[12345]
>> y =exp(x)

2.7183 7.3891 20.0855 54.5982 148.4132

Element by element operations on vector-valued functions

+ addition, subtraction
¥ multiplication

J division

A exponentiation

>> x=[1234]

1 2 3 4
>> y=x+2

3 4 5 6
>> z=x.2

1 4 9 16

>> f=x.*x "2

1 8 27 64

One of the nice things about MATLAB is that functions can take vectors or matrices in their
arguments and produce a vector or matrix as their output. There are special symbols that

allow us to do element by element operations on vector or matrix-valued functions. Some
examples are shown.
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MATLAB does complex arithmetic with scalars and vectors

>> z=3+4*
z=

3.0000+ 4.0000i
>> y =i*z

-4.0000+ 3.0000i
>> x=[ 1+3*% 2%]
x=

1.0000+ 3.0000i 0+ 2.0000i
>y =[1ii]

0+ 1.0000i 0+ 1.0000i
>> z=x*y
z=

-3.0000+ 1.0000i  -2.0000

Common functions take complex arguments (scalars or vectors)

>> exp(i*pi)
ans =
-1
>> x=[0 pi/2 pi];
>> exp(i*x)
ans =
1.0000 0+ 1.0000i -1.0000

MATLAB recognizes i as the square root of minus one. One also can use 1i instead, which is
helpful if we want to use i for other purposes. We can do complex arithmetic in the much
same way we do real arithmetic and many common functions can take complex arguments.



Magnitude and phase of a complex number

z=a+ib
= Ae"

A:‘z‘:\/aerbz

p=tan"'(b/a)

In MATLAB:

>>z =] +2%; z
>> abs(z)

ans = 2.2361 2.24 2.0

63.4°

>> angle(z)*180/pi «——
ans = 63.4349 convert from 10
radians to degrees

Complex numbers can be written as the sum of a real part and an imaginary part or they
can be written as a magnitude times a complex exponential phase term. In MATLAB we can
extract the magnitude of a complex number through the abs function and the phase
through the angle function (which returns radians)



Here are some examples of doing simple plotting and putting multiple plots on the same

graph.

Simple plotting

>>
>>
>>

x = linspace( 0, 2*pi, 100);
y = cos(x);
plot(x, y)

Multiple plots on same graph

>>
>>
>>
>>

>>
>>
>>
>>
>>
>>
>>

or

x = linspace( 0, 2*pi, 100);

yl = cos(x);
y2 = sin(x);
plot(x, yl, x, y2)

x = linspace(0, 2*pi, 100);
yl= cos(x);

plot(x, y1)

hold on

y2 =ssin(x);

plot(x, y2)

hold off

13



Adding a x-axis label, a y-axis label, and a title to a plot

>> x = linspace( 0, 2*pi, 100);

>> y = cos(x);

> plot(x, 'y) . , title text here
>> xlabel(' x-axis text here') 1 : T
>> ylabel(' y axis text here') 08

>> title('title text here') '

0.6

0.4

0.2

y axis text here

3 4
x-axis text here

We can also add x-axis and y-axis labels and give a plot a title. The arguments here are all
strings which have the start and ending symbols ‘



>>
>>
>>
>>
>>

Plotting with different line styles

x = linspace( 0, 2*pi, 100);

y1 = cos(x);

y2 = cos(x+1);

y3 = cos(x+2);

plot(x, y1, --'.x,y2,' :'.X, y3,"-")

y2 dotted line

y3 dot-dash

08r

06+

natk

04k

06}

08F

yl dashed line

At

Here we see using strings for different plotting symbols to generate the plots shown.
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Logical (0-1) vectors

>> x=[12345];
>> x >3
ans =
0 0 0 1 1
>> x<= 4

Use of logical vectors for defining piecewise function

>> x = linspace(0, 1, 500);
>> y =(x A2).%(x < 0.5)+(0.75 - x).*(x >= 0.5);
> plot(x, y)

A MATLAB statement such as x>3 for a vector x is treated as a logical statement and
returns values of 0 in the vector when the statement is not true and 1 values when it is
true. Logical vectors make it very easy to generate a function whose behavior changes
depending on such a logical statement. Look at the example shown carefully to understand
how the function plotted is generated from the ordinary functions x2 and 0.75 —x with the

use of logical vectors.
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Defining parts of vectors

>> x=[5638709];
>> x(1:3)

Other vector operations

Vector magnitude, length

> x=[34];
>> norm(x)
ans =

5
>> length(x)

We can define various parts of vectors as shown in the above examples. We also determine
the magnitude of a vector and the length of the vector (how many elements it contains)



Use of eps to avoid division by zero

>> x=linspace(0, 4, 100); 12
>> y=sin(x)./x;

Warning: Divide by zero. 08

>> x=x+eps*(x==0);
>> y=sin(x)./x; 04
>> plot(x,y)

Use of inf to evaluate expression when a variable goes to infinity

function y = infinitytest(x)

X=X+ eps*(x ==0); >> infinitytest(1)
_ T . ans =
y=3/(1+4/x); 0.6000
>> infinitytest(0)
ans =
1.6653¢-16
>> infinitytest(inf)

ans =

3

functions like sin(x)/x are formally 0/0 which is undefined at x = 0. However, since sin(x)
goes like x when x is small, the limit of sin(x)/x at x =0 is 1. To get this proper limit in
MATLAB we can add a small constant, eps, to the zero value to get the proper limit.
Similarly, when we want the limit of an expression when an argument is very large (i.e.
going to infinity), we can use the inf symbol in an expression to obtain that limit.
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MATLAB Functions

Functions are defined in the editor and saved as m-files. The name of the m-file
is the name of the function with a .m extension, e.g. myfunction.m etc. As shown
in the example below, functions can have multiple outputs (as well as multiple inputs).

function [y, z] = test(x)
y =x."2;
z = 10*exp(-x);

B
8
>> x = linspace(0, 2, 100); !
>> [s, t] = test(x); ©
>> plot(x, s, x, t) sH
.
s
2

All the variables appearing in a function are local to that function, i.e. they do
not change any similarly named variables in the MATLAB workspace.

We create functions in the MATLAB editor window and then save them as m-files. We then
can use them in the command widow, as shown, or in other functions or scripts. An
important property of a function is that all the variables that are defined in the function are

entirely separate from any similar variables in the workspace, i.e. they are local variables to
that function.



MATLAB Scripts

A MATLAB script is a sequence of ordinary MATLAB statements, defined in the
editor and then saved as a file.The file has the name of the script followed by

a .m extension, e.g. myscript.m.

Typing the script name at the MATLAB prompt then causes the script to be executed.
Variables in the script change any values of variables of the same name that exist

in the current MATLAB session.

% testscript
x =linspace(0,2,100);

y=x."2; 9
z = 10*exp(-x); s
plot(x,y,x,z)

>> testscript

A script can also be defined in the editor as simply a collection of MATLAB statements as
they might be entered manually in the command window by the user. Variables defined in
the script exist in the MATLAB workspace so they can use or overwrite existing workspace
variables.



MATLAB Matrices

MATLAB was designed to perform operations with matrices very effectively.
Entering matrices manually is as easy as vectors:

>>matrix = [ 403;035;357 ]

matrix =

w o
[T Y
w

Accessing individual components

>> matrix(2,3)
ans =
5
Accessing rows or columns

>> matrix(: , 2)
ans =

wn W o

N

>> matrix(3, :
ans =

35 7

MATLAB can easily process matrices as well as vectors. Shown are a few of the common
ways we can access the matrix contents.



Some matrix functions

size(M) returns number of rows, nr, and number of columns, nc, as
a vector [nr, nc]
trace(M) trace of M (sum of diagonal terms)
det(M) determinant of M
M. transpose of M (interchange rows and columns) If M is real then

we can use M' instead. However, if M is complex then M' will interchange rows and
columns and also perform a complex conjugation.

>> size(matrix)
ans =
3 3
>> trace(matrix)
ans =
14
>> det(matrix)
ans =
43
>> matrix'
ans = (no change since matrix is symmetric)
4 0 3
0 3 5
3 5 7

Here are a few of the functions available in MATLAB that operate on matrices.
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>>
>>
ans =

13

>>
vt=

1

2

3
>>
ans =

13

34
>>

ans =

157

21

Multiplying matrices and vectors

v=[123];

v*matrix

vt=V
transpose of vector v (turn row vector to column vector or

vice-versa)

matrix*vt

v¥matrix*vt

We can multiply matrices and vectors together. Here are some examples using the vector v

and the previously defined matrix.
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Here are some special matrices than can be used as building blocks for various other

matrices.

Special matrices

zeros(m,n) matrix of all zeros with m rows and n columns
ones(m,n) matrix of all ones with m rows and n columns
eye(m,n) identity matrix with m rows and n columns

>> zeros(3,3)
ans =

0 0 0

0 0 O

0 0 O
>> ones(3,3)

11 1
11 1
11 1
>> eye(3.,3)

10 0
0 1 0
0 0 1
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Solving a system of linear equations
Ix; +3x,+5x; =3
2%, 1x, +1x3=2
4x,+3x, + 6x3=1

This system can be written as Mx = b where M is a matrix and x and b
are column vectors

>>M=[135211;436]

M=
3 5
11
3.6

N S

>>b=[3;2;1]
b=

MATLAB can easily solve sets of linear equations if we place the coefficients of the terms
appearing in those linear equations as matrices and vectors, as shown, and use the
“backslash” operator \ to obtain the solution.
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Determining the eigenvectors and eigenvalues of a matrix M
(For a real symmetric matrix the eigenvalues are real and the eigenvectors are real
and orthogonal to each other)

[eigenvects, eigenvals] = eig(M)

>> [evects, evals] = eig(matrix)
evects =

-0.8752  0.3507 0.3332

0.4783  0.7300 0.4881 Eigenvectors (in columns)
0.0720 -0.5865 0.8067

evals =
3.7531 0 0

0 -1.0172 0 Corresponding eigenvalues
0 0 11.2641

One important operation often performed on a matrix M is to determine its eigenvectors
and eigenvalues. The MATLAB function eig performs the necessary calculations for us.
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Homework Problems

M.1,M.2

Here are listed two homework questions that ask you to solve some problems that are
associated with the waves involved in ultrasonic NDE inspections. See the home work
manual for the actual questions and solutions.
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Ultrasonic System Overview

These slides are essentially Chapter 1 in the book: Schmerr, LW. and S.J. Song,
Fundamentals of Ultrasonic Evaluation Systems — Models and Measurements.



Learning Objectives

Overview of the UT system components that
will be discussed

In subsequent presentations we are going to discuss all the elements that make up an
ultrasonic NDE inspection system. This set of slides will walk through an entire system and
give a preview of what is to come.



The ultrasonic system components

oscilloscope display

pulser/
receiver

o
—
cabling I I receiving transducer

Ll

]

transmitting
transducer

Here are all the components we will discuss in detail: the pulser/receiver, the cabling, the
transducers, and the oscilloscope display. An immersion setup is shown only to illustrate
these components.



1
0.6

voltage versus 02

time pulse, v(t) 02

amplitude, volts

-0.6

Fourier '1-25 2 -15-1 050 051 15 2 25
Transforms time, wseconds
(a)
04
fT: gLT::c? esOfetcr:terum £ oa 1~ frequency
< .
of tqhe ulysep V) 5 (in cycles/sec or Hz)
p ; g 02 o = 2nf
i 2 =frequency
(only positive £ o (in rad/sec)
frequencies shown)
0 o 1 2 3 4 5 6 7 8 9 10

frequency, MHz

(®)

Although ultrasonic systems generate and receive pulses (short signals as a function of
time) we can use a Fourier transform to generate the frequency components contained in
the pulses and plot the so-called spectrum of the pulses as a function of frequency. Shown
is an example of a short signal and its spectrum as might be seen in an ultrasonic NDE test.
If we know the spectrum of the signal we can also use an inverse Fourier transform to
recover the time signal.

Frequency is usually measured either in terms of Hertz (cycles/sec) or in terms of omega
(radians/sec). In NDE tests, the very high frequencies involved are typically measured in
millions of Hertz, or MHz, which stands for megaHertz



The ultrasonic pulser and its equivalent circuit

pulser

voltage pulse
v(t)

(also pulse of
current, i(t))

(V(a)),l(w)) voltage, current

electrical impedance — I(w)

voltage source V; ()

i

o)

The pulser section of a pulser/receiver puts out repetitive short pulses of voltage and
current as a function of time (only one is shown). If we compute the frequency components
of these signals we can show that we can model how the pulser generates these outputs in
the frequency domain by replacing the complex circuits contained in the pulser with a
model that represents the pulser simply as a voltage source and an electrical impedance.



transmitting cabling and its equivalent transfer matrix

Normally we think of a cable as simply transferring signals from one location to another.
However, at the MHz frequencies seen in ultrasonic NDE tests we will see this is not in
general true unless the cable is short (roughly about a meter or less). In the frequency
domain the cable can be modeled as a two port system where input voltage and current
are related to the output voltage and current through a 2x2 transfer matrix. This transfer
matrix can be determined though a series of electrical measurements.



a sending transducer and its equivalent transfer matrix

force, velocity

voltage, current
A
V; I—>|]:” A —
Iin
(a)

]in v
v, I [TA] I F
(b)

L) |5 Thyfly

A transmitting transducer can also be modeled as a two port system where the voltage and
current inputs are converted into mechanical outputs of force and velocity. Again, a 2x2

transfer matrix will characterize this two port system.



a sending transducer modeled as an impedance and sensitivity

ALAALAL
]
E—
Im 17
— S A
A Aa
Vin [ (7] F,[ 2" acoustic radiation
impedance
@ sensitivity
I, /
= Vi = S(j in
‘ =F1Z}
g 7 %e
] /g;ric;l impedance

(b)

Unlike a cable, it is difficult to measure directly the transfer matrix components of a
transducer with purely electrical measurements. However, because such a transducer is
always used when the acoustic output side of the transducer is in contact with some
medium (fluid or solid), the output force and velocity are always related to each other
through an acoustic radiation impedance, i.e. the output of the transducer is mechanically
terminated. Under these conditions we can replace the two port system with a transducer

model consisting of an electrical impedance and a sensitivity, both of which can be
determined with electrical measurements.



putting all the sound generation components together
pulser
o) " oo = (0
output
force
()
7 (o)
( ) Ve =Sv/;lm
V(o _ da
U2
(®)
V(@) — 1, (0) — F(o)
(c) sound generation transfer function

Models of all the elements contained in the sound generation process can be combined as
shown. These elements can all be lumped into a single complex sound generation transfer
function that relates the input voltage spectrum of the pulser to an acoustical output of the
sending transducer such as the force. Thus, we can reduce the entire sound generation
process into a model of single input-single output system characterized by the sound
generation transfer function.



Modeling the acoustic sources acting on the receiving transducer

\>Z v
incident and nl.l I»
scattered waves Vi

k @

acoustic radiation impedance
Z (o) I

o> [ ]

blocked force

When a transducer is used a receiver, the waves incident on and scattered from the
transducer act as acoustic driving terms as shown in (a). These waves can be modeled as a
acoustic source, called the blocked force (which will be defined later) acting on the
transducer face and the acoustic radiation impedance of the receiving transducer.



the receiving transducer also can be modeled by an
impedance and sensitivity and these combined with the
acoustic sources to yield a simple source and impedance
model:

impedance

voltage V, ()
=8 (0)F; (o)

The 2x2 transfer matrix of the receiving transducer can also be replaced by an electrical
impedance and sensitivity and these elements can be combined with the acoustic driving
terms to model the receiving transducer and its acoustic sources by simply an equivalent
voltage source and an electrical impedance.
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receiving cabling and its equivalent transfer matrix

A cable between the receiving transducer and the receiver section of the pulser/receiver
can again be modeled as a two port system characterized by a 2x2 transfer matrix.



model of the receiver as an electrical impedance and gain factor

output voltage

receiver —

(Va-1o)

impedance

gain factor

The receiver section of a pulser/receiver acts to amplify the received signals and often
provide low and high pass filters that modify the frequency content of the signals. In
quantitative NDE studies we normally do not want to filter out any of the available
information so that we will model the receiver as only an electrical impedance and a
frequency dependent gain factor. If one wishes to add filters to this model, that is easily
accomplished.
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putting all the sound reception components together
FB (a)) receiver VR (a))
~— " |~
output
voltage
(a)
zZ5e
V,=KV,
SSFE [R] IVO Q} Z[;’ R 0
(b)
Fy () Ve (@)
—] tR (C()) —
(c)

One can combine the receiving transducer, cable, and receiver into a composite model
where all the elements are known. Again, these elements can be combined into a receiving
transfer function that relates the blocked force to the received voltage in a single input,
single output system that characterizes the receiving part of the entire system.
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Modeling all the wave propagation and scattering
components as a transfer function

Vi(@) Ve (@)

-> pulser o Lo receiver |y,

TR )

acoustic/elastic
processes

V(@) @D

acoustic/elastic transfer function

Since we have models of both the sound generation and sound reception parts of a
measurement system, to complete the model for the entire system we need to characterize
all the acoustic/elastic waves present between the transducers in terms of an
acoustic/elastic transfer function that relates the force generated by the transmitting
transducer to the blocked force acting on the receiving transducer.

Unlike the sending and receiving transfer functions, however, it is not possible to measure
the acoustic/elastic transfer function since it due to complex 3-D wave interactions that are
not directly accessible. Thus, one must model this transfer function with appropriate wave
propagation and scattering models.

15



Modeling an entire ultrasonic measurement system

%74 \(@

E(w)zio(w)Vf(w) ACRADIAC
sound generation sound reception
transfer function Fy(0)=t,(0)F (o) transfer function

If we combine together all the elements we have described we now have a complete model
of an ultrasonic NDE measurement system.



In terms of transfer functions the ultrasonic system looks like:

V(@) — t; (o)

tp (@) [ V()

function:

system function

s(a)) —

We can also combine the sound generation and
reception transfer functions with the voltage source of
the pulser tin a single function called the system

output voltage

= V(@)

acoustic/elastic transfer function

Ve(@)=t,(0)s(w)

A complete ultrasonic system model can thus be characterized in terms of the three
transfer functions we have discussed. However, we can combine the sound generation and
sound reception transfer functions together with the voltage source of the pulser into a
single system function that we will show we can measure directly without knowing all the
individual components that go into that system function. Thus, ultimately we can simply
characterize a complete ultrasonic system as a single input, single output system where if
we measure the system function and model the acoustic/elastic transfer function, we can
predict the spectrum of the received voltage signals of the entire measurement system. An
inverse Fourier transform of this spectrum then will produce the measure signals as a

function of time.




)

The Fourier Transform

The following slides will give a brief introduction to the Fourier transform. It is this
transform that allows us to characterize completely an entire ultrasonic system in terms of
its components in a direct and simple manner.



Learning Objectives

definition of Fourier Transform and its inverse
reasons for use of the Fourier Transform

brief introduction to Fourier transform properties
delta function and its spectrum

definition of dB scale

definition of -6dB bandwidth

bandwidth - time domain connection

We will define the Fourier transform and its inverse and give the reasons why this
transform is so useful. We will also describe some of the characteristics of Fourier
transforms and give an example of a very important special case — the Fourier transform of
a delta function.

We will define the decibel scale often used for ultrasonic signals and the characterization of
the frequency domain spectrum of a signal in terms of its -6 dB bandwidth.

Finally, we will demonstrate the connection between the characteristics of a signal in the
time domain and in the frequency domain.



Fourier Transforms for UT Systems

input voltage

vi(t) output voltage ~ Time domain +> Frequency domain
l ﬁ Ve(t)
Fourier transform
@ . V(@)= | v()exp(ior)dr
o...rad/sec

inverse Fourier transform

v(t) === [ ¥ () exp(=ieot) do

Tord

Even though an ultrasonic measurement system inherently involves time-dependent signals
such as the input voltage of the pulser or the measured output voltage at the receiver, as
shown, it is easier, as stated earlier, to characterize all the elements of the measurement
system in the frequency domain. Fortunately, the Fourier transform allows us to generate
the frequency domain signals from those in the time domain. Similarly, the inverse Fourier
transform allows us to reverse this process and generate the time domain signals from
those in the frequency domain.



Equivalent forms

V(w)= Tv(t) exp(iwt)dt

W)= %z ifoV(a))exp(—i ot)dwo

or w=| 2z rad ](f cyclej

V(f)= T v(t)exp(27ift )dt el

~+00
WD) = TV(f)exp(-27ift)df
V(a)) or V(f ) ... dimensions are volts-sec or volts-psec

for NDE problems ¢ is usually in psec, fin MHz

Shown are the definitions we will use of the Fourier transform and its inverse. Those
transforms can be written in terms of the frequency in rad/sec or in terms of cycles/sec
(Hz). In NDE tests the time signals are often very short so they are typically measured in
microseconds (usec) and the frequencies are very high so that the corresponding frequency
domain signals are typically measured in terms of millions of cycles/sec (MHz).

Note that if v(t) is a time domain voltage signal with t measured in seconds, its frequency
spectrum V(f) has dimensions of volts-sec, but because we will often work entirely in the
frequency domain, we will ignore this difference and refer to the frequency spectrum
signals as simply volts. Other quantities such as pressure, velocity, current, etc. will follow
this naming convention.



Fourier Transforms

+o0

V(f)= _[ v(t)exp(2zift)dt

+00

v(t)= '[ V(f)exp(-2zift)df

—00

A few properties of Fourier Transforms

It v(@)er (/)
then v(t—t,) <> exp(27if1,)V (/)

d .
7j<—>—2mf1/(f)

Because of the complex exponential term in the Fourier transform, the frequency domain
signal V(f) will usually be complex even though the time domain signal v(t) is real.

Using this definition it is easy to derive a number of relationships between time domain
signals and frequency domain signals. Two important cases are shown here where we see
that a shifting (delay) of a time signal causes the frequency spectrum to be multiplied by a
complex exponential term. Similarly, differentiating a time domain signal is equivalent to
multiplication by an imaginary frequency dependent term in the frequency domain.



Example Fourier transform

+o0

V(f) = jv(t)exp(27rift)dt

—00

w(f) V(f)=IAeXp(27riﬁ)dt

A Aexp(27ift) "
- 2rif o
A [exp(Zm’fto)—l]
f t - 2rif
Atyexp(iz ft,)sin(7 ft,)
- 7 ft,

As a simple example of a Fourier transform, consider the box function shown in the time
domain. In this case the Fourier transform is easy to calculate and we see that indeed this
the transform is a complex function in the frequency domain.



>>y=linspace(0, 5, 100);
>>u=u+eps*(u==0)
>> yf = exp(i*pi*u).*sin(pi*u)./(pi*u);
>> plot(u, abs(yf))

>> xlabel('f*t_0")

>> ylabel('abs(V/At_0)")

08 B

071 b

abs(V/At)

o o o o

5 @ R o
L

°
I

o

o

0.5 1 15 2 25 3 35 4 4.5 5

If we evaluate the Fourier transform of the box function and plot its normalized magnitude
versus non-dimensional frequency for positive frequencies we see most of the frequency
content is in a low frequency “lobe” with decreasing content in side lobes as the frequency
increases.



>> plot(u, angle(yf))

3.5

25+

If we plot the phase of the function we see a general linear increasing behavior with jumps
of pi radians. The linear behavior comes from the complex exponential term in the function
and the jumps of pi radians occur because of the periodic changes in sign of the sine
function ( recall exp(im)=-1).



Concept of a delta function (impulse)

v(?)
Consider taking the limit A
ty—>0
with Az, =1
o !
vV —1
W(1) > 5(1) (/)
@ 1.0
; A

If we imagine taking the limit of the box function as its time duration goes to zero but
where we keep the product of its amplitude and duration at unity, then conceptually we
obtain an infinite spike of zero duration at time t = 0, which we call a delta function. In the
frequency domain the spectrum simply goes to a constant value of one at all frequencies.
Thus, a delta function excites all frequencies equally which makes it an ideal input function
to characterize a system’s frequency domain response.

We will indicate that the delta function is a key concept by placing a light bulb next to it. In
later slides we will use the light bulb symbol to highlight other key concepts.



Some properties of delta functions
5(t—r)
. 0 7<aort>b
jg(l)&(t—r)dtz g(r) a<t<b ‘
‘ g(r)/Z T=aort=>b . p
5(t—r)=0 t#7T
H(t—r)
o 0 ¢<r 1.0
I 5(u—z’)du= 1/2 t=1 0.5 .
e 1 t>7
T t
=H(t=7) ynit step function

Here we list several important properties of delta functions. We see that a delta function
multiplied by an “ordinary” function in an integral has the property of sampling that
ordinary function at the location of the delta function. Similarly, we see that an integral of a
delta function generates a unit step function at the location of the delta function.



v(1)=cos(27f, t)exp[—iz't2 /4A2J

produces a Gaussian spectrum with a center frequency f, and
bandwidth bw where ) JIn2

7 bw

v(f)= \/;A{GXP[—‘VTzAz (f—f(,-ﬂ + GXP[—MZAZ (f +f(,)2J}

max

(f)

max

f frequency

This slide shows an example time domain signal that generates a spectrum consisting of
two real Gaussians, one centered at a positive frequency and one centered at a negative
frequency. Only the Gaussian centered at the positive frequency is shown in the plot.
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fc | frequency
definition of a v %
ratio in decibels 7(a’B) =20log,, [7}

r r

aratio ¥ is

' 20log,, (lj =-6.02dB
equivalent to -6 dB 2

f, = center frequency

bw = -6 dB bandwidth

Gaussians are often used to discuss signal characteristics. For example, we can define the
bandwidth of the Gaussian as the width of the function, bw, where the function drops to
one half of its maximum value. The value of %4, as measured in decibels (dB) is -6 dB so this
is also called the -6 dB bandwidth. Similarly, we can call the frequency at the location of

the maximum of the Gaussian as the center frequency of the signal.
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In real ultrasonic systems the spectrum is not symmetric, so
how do we define a bandwidth and center frequency?

_ S+
2

-6 dB bandwidth (in % of center frequency):

center frequency:  f,

bw=f2—_f1><100

c

In a real ultrasonic signal (whose spectrum is not symmetric like the Gaussian) we can
determine the maximum magnitude of the spectrum and then find the frequencies where
the signal is one half of that maximum value. Those two frequencies then can be used to
determine both a center frequency and -6dB bandwidth for the signal as shown.



Transducer specifications (from the manufacturer)

SIGNAL WAVEFORM FREQUENCY SPECTRUM

[WOLT)

P i I
o 5

{2 USEC/ DIVISION )

MEASUREMENTS PER ASTM E1065

WAVEFORM DURATION: SPECTRUM MEASURANES:

=140B LEVEL —= .S48BUS CEMTER FREQ., —=-—- S503MHz
=2008 LEVEL —— .680US PEAK FREQUEMCY —- 405MHz
—400B LEVEL —- 1,24U5 =508 BANDWIDTH —— 4677 %

- 6 dB bandwidth in % of center frequency

Here is an example of a specification sheet obtained from a transducer manufacturer that
shows plots of the time domain and frequency domain outputs of the transducer and
where we see they give both the center frequency and -6 dB bandwidth.
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f =10 MHz V(f) w()
[note scale differences]

bw =4 MHz 0 W

0
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0.4 1

bw =2 MHz N N\ ’

0
-20 0 -1 -0.5 0 0.5 1
1 1

bw = 1 MHz 0 jk Jk _1

-20 0 -1 -0.5 0 0.5 1

frequency, MHz time, [ sec

We can use the time domain signal discussed previously that generates Gaussians in the
frequency domain to examine how changes in the time domain and frequency domain are
related. Here, we keep the center frequency fixed at 10 MHz and change the bandwidth.
We plot both positive and negative frequencies to show that there are actually two
Gaussians present. At the largest bandwidth we see that the time domain signal is the
shortest, becoming wider in the time domain as the bandwidth becomes smaller. Note that
the amplitude of the frequency domain signals also gets larger as the bandwidth decreases
even though the amplitude of the time domain signal is unchanged. This behavior may not
be as directly evident since we see the scale of the response in the frequency domain is
changed for the various cases to make the plots more readable.
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% Gaussian_script

f= linspace(-20, 20, 200);

t =linspace(-1,1, 500);

subplot(3,2,1)

bw =4,

fc=10;

[y,z]= Gauss_funcs(ft,fc, bw);

plot(f, y)

subplot(3, 2, 2)

plot(t,z)

subplot(3, 2, 3)

bw =2; function [y, z] =Gauss_funcs(f,t,fc,bw)
fc=10; a = sqrt(log(2))/(pi*bw);

y = sqrt(pi)*a*(exp(-(2*a*pi*(f - fc)).”2) + exp(-(2*a*pi*(f + fc))."2));

[y,z]= Gauss_funcs(f,t.fc, bw);
z = cos(2*pi*fc*t). *exp(-(1/(4*a2))*t."2);

plot(f,y)

subplot(3,2,4)

plot(t,z)

subplot(3, 2, 5)

bw =1;

fc=10;

[y,z]= Gauss_funcs(ft,fc, bw);
plot(fy)

subplot(3,2,6)

plot(t,z)

Here is the MATLAB code that generates the plots seen on the previous slide. The Matlab
m-files for all the functions and scripts discussed in this course can be downloaded from
the course website.



Note: there are a number of forms used for the Fourier
Transforms. Some of these are different from the one we
will use here exclusively:

V(iw)= T w(t)exp(iwt)dt

—00

w(t) = 2i T V(w)exp(—iwt)daw
7T

Some other examples:

V(w) =ﬁzv(t)exp(ia)t)dt

(often seen in the
math literature)

v(t)= ﬁzlf(a))exp(—iwt)da)

Our definition of the Fourier transform and its inverse are not the only ones seen in the
literature. Here, and on the next slide are some examples of different definitions.
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V(w)= jv(t)exp(—ja)t)dt j=+-1
. (often seen in the
v(t)= 2L V(w)exp(+jwt)dw EE literature)
7 —00

All of these forms are acceptable. In fact we could write
Fourier transform pairs in general as:

NI exp +la)t dt

=N, j w)exp(Fiot)dw

1
aslongas NN,=—
2r

All of these definitions are acceptable but we will only use our original choice in all
subsequent work to be consistent. Choosing these other definitions will lead to differences

in amplitude and/or phase from our definition so you must be careful when comparing our
results with others that may appear in the literature.
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Here are several basic references on Fourier transforms. There are many more.
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The Fast Fourier Transform (FFT)
and MATLAB Examples

In practice, Fourier transforms are calculated with a specific numerical procedure called a
fast Fourier transform (FFT) so these slides will describe in detail how those calculations
are performed, using MATLAB to illustrate specific examples.



Learning Objectives

Discrete Fourier transforms (DFTs) and their relationship

to the Fourier transforms

Implementation issues with the DFT via the FFT
sampling issues (Nyquist criterion)
resolution in the frequency domain (zero padding)
neglect of negative frequency components

We will examine discrete Fourier transforms and their connections to the Fourier transform
and show how discrete Fourier transforms are calculated with the fast Fourier transform
algorithm. Various FFT implementation issues will be discussed.



V()= [oexp(afiyi

W0 = [V()exp(-2ifi)if

These Fourier integral pairs normally are performed
numerically by sampling the time and frequency
domain functions at discrete values of time and
frequency and then using the discrete Fourier transforms
to relate the sampled values

If ultrasonic signals are sampled, then instead of performing these Fourier integrals we
need to perform sums of sampled values. These sums define the discrete Fourier
transforms.



Fast Fourier Transform

Discrete Fourier Transform
T N-1 ..
V;’(f’“)zﬁjé) vp(tj)exp(me / N)

1 N=1
vp(tk):; ;0 V,(f, )exp(-27ikn / N)

n=

T = NAt ... time window sampled with N points

At ... sampling time interval

t,=jAt  f =nAf =n/NAt

These are the discrete Fourier transform and its inverse which arise from sampling the
Fourier integrals we defined earlier.



Fast Fourier Transform

As with the Fourier transforms, there are different choices

made for the Discrete Fourier transform pairs. In general, we
could write:

N-1
V.(f)=nv, (tj)exp(iZm'jn/N)
=0
o
v, (t)=m2 V. (f,)exp(F2xikn/ N)
n=0
aslongas nn,=— The indexing could also go from

1 to N instead of 0 to N-1

The exact form of the discrete Fourier transform pairs, like the Fourier transform integrals,
depend on the specific form we choose for those transforms. Note that these represent
periodic functions while our ultrasonic signals are typically aperiodic. We have placed a p
subscript on these quantities to indicate this periodicity. We will see that we must satisfy
certain conditions to ensure this periodicity does not affect the calculations.



Fast Fourier Transform

T N-1
V()= Z v, Jexe(2ijn/ N)
]:

N—

1 N=1
v,(t,)= - ;0 V,(f, )exp(-27ikn / N)

These discrete Fourier Transforms can be implemented
rapidly with the Fast Fourier Transform (FFT) algorithm

number of multiplications

direct calculation

with the FFT

N

(N-1y?

(N/2)log,N

256

65,025

1,024

1,024

1,046,529

5,120

4,096

16,769,025

24,576

FFTs are most efficient if the number of samples, N, is
a power of 2. Some FFT software implementations require this.

Performing these discrete Fourier transforms directly is computationally intensive but if we
use a particular algorithm, called the fast Fourier transform (FFT) the number of
multiplications can be drastically reduced as shown in the table. We will not describe the
details of an FFT algorithm but there are many references available that do give that
information. Note that some FFT algorithms require the number of sampled values be a
power of 2 since that choice typically makes the algorithm more efficient.



Fast Fourier Transform

Mathematica 1 N
Fourier[{a,,a,,...,a\}] VN Ea’ exp[27i(r —1)(s —1)/ N]
I lists 1 N .
InverseFourier[{b,,b,,....b\}] VN SZ::] byexp[=27i(r —1)(s —1)/ N]
Maple o
FFT(N, X, X;,) Y x(j)exp[-27ijk / N]
arrays 1f=]3_1 N=2n
iFFT(N,X,..X, ) ~ ZX(k)exp[27ijk/ N]
k=0
MATLAB N
ffi(x) jz:jlx(i)exp[—Zizi(j ~1)(k—-1)/ N]
arrays 1y o
ifft(X) I EIX(])eXp[%zz(j ~1Xk-1)/N]

Different software packages implement the FFT in different forms. Here are some of the
common cases.



Fast Fourier Transform

FFT function

function y = FourierT(x, dt)
% FourierT(x,dt) computes forward FFT of x with sampling time interval dt
% FourierT approximates the Fourier transform where the integrand of the
% transform is x*exp(2*pi*i*f*t)
% For NDE applications the frequency components are normally in MHz,
% dt in microseconds
[nr, nc] = size(x);
ifnr==1
N =nc;
else
N=nr;
end
y = N*dt*ifft(x);

We will use the MATLAB functions (fft and ifft) to define new functions (FourierT and
IFourierT) that are compatible with our definitions of the Fourier and discrete Fourier
transforms and there inverses. Here is our FFT function FourierT.



Fast Fourier Transform

inverse FFT function

function y = IFourierT(x, dt)

% IFourierT(x,dt) computes the inverse FFT of x, for a sampling time interval dt
% IFourierT assumes the integrand of the inverse transform is given by

% x*exp(-2*pi*i*f*t)

% The first half of the sampled values of x are the spectral components for

% positive frequencies ranging from 0 to the Nyquist frequency 1/(2*dt)

% The second half of the sampled values are the spectral components for

% the corresponding negative frequencies. If these negative frequency

% values are set equal to zero then to recover the inverse FFT of x we must

% replace x(1) by x(1)/2 and then compute 2*real(IFourierT(x,dt))

[nr,nc] = size(x);

ifnr==1

N=nc;
else

N=nr;
end

y =(1/(N*dt)*fft(x);

Here is our inverse FFT function IFourierT



Fast Fourier Transform

v, and ¥ in the discrete Fourier transforms are periodic functions.

How do we guarantee these represent non-periodic pulses?
Vp(t)Ev(f) . Tmax <T = NAt
if
V,(N)=V(f) £ =S >2f . Nyquist

criterion
v, (1)
’ | Vp(f) | N samples
| DN sar N samples /\\ /\ j\l
| ? U | |
-T f

Shown here is a typical transient (aperiodic) ultrasonic signal and its spectrum, both
repeated periodically. As long as the total time, T, of the sample window exceeds the time
duration of the signal, and the sampling frequency is twice the maximum frequency
present in the spectrum of the signal, then there is no overlap and we will obtain faithful
representation of our signals in both the time and frequency domain, as shown. The
condition that must be met on the sampling frequency is called the Nyquist criterion. In
ultrasonic tests the frequencies involved typically are less than 20 MHz because of the
transducers used and that fact that material attenuation also removes higher frequencies
so one often samples ultrasonic NDE signals at a 100MHz sampling frequency, which is a
very conservative choice satisfying the Nyquist criterion. Note that in the frequency domain
the sampled spectrum values at negative frequencies are contained in the upper half of the
sampled frequency domain values.
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The use of linspace and s_space functions for FFTs
and inverse FFTs

/ periodically
repeated signal

/ signal

T=1.0

At=T/N
In the example above N=8, T=1.0 so Ar=1/8=0.125

>>t = linspace(0,1, 8);
>> dt = (2) -t(1)
dt= 0.1429

In modeling our sampled ultrasonic signals we cannot use the built-in MATLAB function
linspace as it does not generate the proper samples. To illustrate, consider this simple time
domain function which is sampled over a time window T=1 with N = 8 samples so we want
the sampling interval to be 1/8 and the sampled values to be the ones shown as red dots. If
we use linspace( 0, 1, 8) we see an incorrect sampling interval (and the actual time values

(not shown) will be incorrect)

11



To get the proper sampled values and the correct
At we must use the alternate function s_space
(defined later)

>>t=s_space(0,1, 8);
>> dt = t(2)-t(1)
dt = 0.1250

>> t = linspace(0,1, 512);
>> dt =t(2) - t(1)
dt = 0.0020

>>t=s_space(0,1, 512);
>>dt = 1(2) - t(1)
dt = 0.0020

We have defined a new MATLAB function, s_space, that generates the proper values, as
shown above for our previous example. Note that if the number of sample points is large,
then these differences between linspace and s_space are not as apparent, as we can see if
we make N = 512. However, those differences are still present (see the next slide) so in
generating sampled time and frequency domain functions we will always use s_space
rather than linspace.

12



When you are using many points the difference is
not large if we use either linspace or s_space but the
difference is still there

>>format long
>>t = linspace(0, 1, 500);
>> dt = t(2) -t(1)

dt = 0.00200400801603

>>t=1s_space(0, 1, 500);
>> dt = t(2) -t(1)

dt = 0.00200000000000

If we use the Matlab command format long we can see the small differences between the
use of s_space and linspace

13



function y =s_space(xstart, xend, num)

% S_SPACE(XSTART,XEND, NUM) generates num evenly spaced sampled
% values from xstart to (xend - dx), where dx is the sample

% spacing. This is useful in FFT analysis where we generate

% sampled periodic functions. Example: generate 1000

% sampled frequencies from 0 to 100MHz via f=s_space(0,100,1000);

% In this case the last value of f will be 99.9 MHz and the

% sampling interval will be 100/1000 =0.1 MHz.

ye =linspace(xstart, xend, num+1);

y=ye(l:num);

Here is the s-space function which we see is a simple modification of the use of linspace to
get the proper sampled values and sampling interval.
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Example of use of FourierT on a real ultrasonic signal

0.02
>>load FBH_flaw_n8 flat-bottom hole

>> size(texp) signal 0.015

0.01
ans =

1 1000 time values 0.005

>> size(vexp)

ans =

1 1000 voltage values
>> plot(texp, vexp) -0.015|
>> dt = texp(2) - texp(1)

-0.02

dt= s psec
3 x10
0.0100 sampling interval
3
>> fs = 1/dt
2.5
fs= )
100.0000 sampling frequency 15

>> vf = FourierT(vexp, dt);
>>f=s5_space(0, fs, 1000); 05
>> plot({, abs(vf))

0 10 20 30 40 50 60 70 80 9 100

MHz

Here is an example of Fourier analysis of an actual ultrasonic signal, which in this case is the
signal reflected from a flat-bottom hole in a metal sample( a common reference reflector
used in NDE).

The sampled voltage versus time signal is stored in a vector, vexp, and the sampled times
are in the vector texp, both of which are loaded from a saved file into MATLAB. If we
examine those vectors we see there are 1000 sampled time and voltage values and the
sampling interval is 0.01 (microseconds) and the sampling frequency is 100 (MHz). The
received time domain waveform is plotted.

If we do the FFT with our MATLAB function FourierT, we must generate a proper set of 1000
frequencies with s-space, after which we can plot the magnitude of the spectrum. We see
most of the spectrum is between zero and 10 MHz and we see the corresponding negative
frequency components in the upper half of the spectrum. Clearly our sampling frequency
was more than sufficient in this case to satisfy the Nyquist criterion.

15



>> plot(f(1:200), abs(vf(1:200)))

>> 25

magnitude of the spectrum

o 2 4 6 8 10 12 14 16 18 20

MHz

>> plot(f(1:200), angle(v{(1:200)))

phase of the spectrum (in rad)

Here we see both the magnitude and phase of the frequency spectrum on a reduced
frequency scale. Below 1 MHz and above 8 MHz the spectrum is small so that likely the
phase values are contaminated by noise at those frequencies. We see that even in the 1-8
MHz range the phase is rapidly changing. We will examine the reason for this shortly.

16



>> vt =[FourierT(vf, dt); inverse FFT
>> plot(texp, vt)

Warning: Imaginary parts of complex X and/or Y arguments

ignored

>> plot(texp, real(vt))

0.2 , . . " . . . .
72 74 76 78 80 82 84 72 74 76 78 80 82 84
psec psec
original signal obtained from inverse FFT

Here we attempt to perform the inverse FFT with the MATLAB function IFourierT to recover
our original time domain signal vt. We see that MATLAB gives us a warning that the signal
has imaginary parts. These arise because there are always very small round-off errors in
doing the complex arithmetic with these transforms, leaving some inconsequential
imaginary values. We can remove those values by simply taking the real part of the signal
which does recover our original signal.

17



original time signal 001

>> yshift =[ vexp(400:1000) vexp(1:399)];
>> plot (texp, vshift)

shifted time signal

psec

We saw previously that our signal had a rapidly changing phase. This was due to the fact
that the signal was shifted in time to near the center of the plot. If move the signal closer
to the left by moving the first 399 points in the beginning of the plot to the end of the plot

then we obtain the shifted signal shown.



>> vfs = FourierT(vshift, dt);
>> plot( f(1:200), abs(vfs(1:200))) 25

same magnitude of spectrum as before

>> plot( f(1:200), angle(vfs(1:200))) MHz

The phase is now different. This is to be
expected because recall a time delay 7, 1
causes the spectrum to change only in

its phase, i.e. 0
v(t) oV (f)
w(t-1,) o exp(27if1,)V (f) |

If we now do an FFT of the shifted signal and plot the magnitude and phase of the
spectrum over the first 200 points (going from 0 to 20 MHz) we see that the phase is less
oscillatory because time delays produce a complex exponential term which affects the
phase (but not the magnitude) of the spectrum, as seen above. If we move the signal even
further to the left the oscillations will be even less than seen here.
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Fast Fourier Transform

zero “padding”

v(t
© VO N samples
N samples

A

| |
T Af=1/T f,=1/At

| V(ﬂ | 2N samples

2N samples
f
flﬂ - .
|

Af=1/2T f, = 1/At

v (t)

In some cases the sampling time interval (and hence the sampling frequency) may be
adequate to prevent aliasing but we would like to increase the number of samples in the
frequency domain to better capture any rapidly changing behavior there. We can do this by
simply adding (padding) the time domain with zeros spaced at the same sampling time
interval. Thus, the sampling frequency is not changed but the number of samples in the
frequency domain will be larger. Shown above is an example where we pad a signal with N
samples with N additional zeros and hence also double the number of samples in the
frequency domain from N to 2N over the same frequency range. This is called zero
padding.
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Zero padding example

>>t =s_space(0, 4, 16);
>>v =t*(t<0.5)+ (1-t).*(t >= 0.5 & t<=1.0);
>> h = plot(t, v, 'ko');

>> set(h, 'MarkerFaceColor', 'k')

>>axis([ 0 4 0 0.6])
0.5 o
>> dt = t(2) - t(1) 0.4
dt = 0.2500 0.3
0.2
0.1
P ——— 090090 00 0 0 o 0 o o

0 051 15 2 25 3 35 4

psec

As an example, here we generate samples of a triangular time domain function with s-
space going from t =0 to t = 4 microseconds. Thus, the sampling interval is 4/16 = %
microseconds and the sampling frequency is 4 MHz. Note that s-space properly gives us the
correct 16 points and those points do not include a point at t = 4 microseconds as that
point is the same as the one at t =0.



>>f =s_space(0, 1/dt, 16);
>> vf = FourierT(v, dt);
>> h = plot(f, abs(vf), 'ko');

>>axis([ 0 4 0 0.3]) 025¢-¢—-=-="="="="=--- O
O 2 L L L]
. [ ] [
0.15
>> set(h, 'MarkerFaceColor', k')  , * ¢
>> df = f(2) - f(1) . .
0.05 . .
0 X .l . e X
df = 0.2500 0 051 156 2 25 3 35 4
MHz

If we compute the FFT of this sampled function and generate a set of sampled frequencies
with s_space, then we obtain the 16 sampled frequency domain values as shown with the
spacing of 74 MHz. Note again s_space gives us the proper sampled values and that does
not include a value at f =4 MHz, which is the same as the value at f = 0.



Now, pad the original signal with zeros

_ . could also use
>> vi2 =[v, zeros(1,16)]; vt2 = padarray(v,[0, 16], O, ‘post’);
>> vf2 = FourierT(vt2, dt);

>> h = plot(f, abs(vf2), 'ko');

??? Error using ==> plot

Vectors must be the same lengths.
0.25¢0g - - === ———————-——- -
[ ] L
>> f =s_space(0, 1/dt, 32); 02 . K
>> h = plot(f, abs(vf2), 'ko"); 0.15¢ . i
>> set(h, 'MarkerFaceColor','k') 0.1 | . .
>>axis([ 04 0 0.3]) 0.05! . .
... ...

>> df=f(2) - f(1 0 ‘ ——ees= :

) -1(1) 0 051 15 2 25 3 35 4
df =0.1250 4mm MHz

half the former df
same sampling frequency

Now, we pad our original time domain signal by adding 16 zeros and then do a FFT. If we try
to plot the result we get an error because our set of frequency values has doubled so we
must generate a new set of 32 frequencies from zero to the sampling frequency. Then the
plot works fine and we see a much finer resolution where now the frequency domain
sampling interval is 1/8 MHz.



Now, use a much higher sampling frequency

>>t=s_space(0, 4, 512);
>>v =t*(t<0.5) + (1-t).*(t >= 0.5 & t<=1.0);
>> dt = 1(2) -t(1)

dt =0.0078 0.25
>> fs =1/dt 0.2
fs =128 015

>>f=g_space(0, fs, 512); 0.1
>> vf =FourierT(v, dt); 0.05
>> plot(f, abs(vf))

0 0 20 40 60 80 100 120 140
MHz

We used the triangular function example to illustrate zero padding, using very few points so
we could easily see the results. However, did we adequately address aliasing? To answer
this let us use a much higher sampling frequency (128 MHz = 32 times higher than
previously used) as shown here and plot the magnitude of the spectrum. We see in this
case the positive and negative frequency values are well separated and the spectral values
appear to be small below about 10 MHz. Let us examine those values on a smaller scale
(next slide)



To see the frequency spectrum on a finer scale

>> h = plot(f(1:20), abs(vf(1:20)), 'ko");

>> set(h, 'MarkerFaceColor', 'k')

0.25¢%,

0.2 *

0.15 ¢

017 °

0.057 °

0 ‘.o=-°°‘°°o-‘--o
0 1 2 3 4 5

MHz

Note: we had some aliasing before

If we plot the first 20 values of the spectrum (which are values from approximately 0 to 5
MHz) we see that there are some small higher frequency values that were missed
previously so a sampling frequency of 4 MHz was not sufficient to completely prevent
aliasing.



We can do multiple FFTs or IFFTs

all at once if we place the data in columns
>>t=s_space(0, 4, 16);
>>v =t*t<0.5)+ (1-1).*(t >= 0.5 & t<=1.0);
>>dt =1(2) - t(1);

>>mv=[V' V' VY]

0.25¢

>> mvf = FourierT(mv, dt); *

>> vf1 = mvf(:,1); 015
>>f=s space(0, 1/dt, 16);

0.1
>> h = plot(f, abs(vf1)', 'ko") ° .

>> set(h, 'MarkerFaceColor', 'k') °® . .

Note that we can do multiple FFTs or inverse FFTs all at once for multiple signals if we place
those sampled signals in a matrix where the sampled values are in the columns of that
matrix. Here we generate such a matrix which simply contains the original triangular
function used previously but duplicated three times in the columns of the matrix mv. We
then do the FFT of that matrix and extract the first column of frequency domain values in
the matrix mvf and plot them. Identical values are obviously contained in the other two
columns.
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Note that even though there is aliasing here if we do the inverse FFT
of these samples we do recover the original time samples:

>> v1 =IFourierT(vf1,dt);
>> h=plot(t, real(v1), 'ko');

>> set(h, 'MarkerFaceColor', 'k') 0.6
0.5 .
04
0.3
0.2
0.1

OI ® @ 06 06 06 06 & 0 0 0 0 o

01 05 1 15 2 25 3 35 4
usec

Recall that the sampling used in the previous slide was insufficient to prevent aliasing. In

spite of that fact, when we perform an inverse FFT we do obtain the proper time domain
function. Thus, aliasing generates incorrect frequency domain values through the FFT but
does not prevent us from recovering the original function with the inverse FFT.
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Fast Fourier Transform

FFT Examples using the function:

(t)— A[l—cos(27rFt/N)]cos(Zﬂ'Ft) (O<t<N/F)
4 0 otherwise

A ... controls the amplitude
F ... controls the dominant frequency in the pulse
N ... controls the number of cycles (amount of "ringing")
in the pulse and hence the bandwidth
MATLAB function:

function y = pulse_ref(A,FN, t)

y =A*(1 -cos(2*pi*F*t./N)).*cos(2*pi*F*t).*(t >= 0 & t <= N/F);

Here, we will define a function that is controlled by three parameters (A, F, N) that will
allow us to demonstrate some explicit results.
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Frequency spectrum for relatively wideband pulse
>>t=s space(0,5,512); B
>> dt=1(2)- t(1)
1
dt= 0.0098
0
>> y=pulse_ref(1,5,3,t); 1
>> plot(t, y) )
. “o0 1 2 3 4 5
>> yfl=FourierT(y,dt); usec
>> f=g space(0, 1/dt, 512); 0.35 .
>> f(end) 03l
ans = 102.2000 ~—— .
sampling o2s}
frequency |
7 ploE abshL) " Nyquist frequency
0.15 | .
. . . — 1
if t is in usec =142 sampling
fis in MHz o1 frequency
B )
00 20 40 MH 60 80 100 120
z

If weletA=1,f=5,N =3 we will generate a short signal with little ringing that has a
relatively broad spectrum. As shown we will choose a sampling frequency of about 100
MHz which from the spectrum seen is vey conservative.



If we look at the spectrum on a finer scale we see a relatively broad spectrum centered at

5 MHz.

Expanded view
0-20 MHz

>> plot(f(1:100), abs(yf1(1:100)))

0.35

037
0.25]
027
0.15]
017
0.05]

00 2 4 6 s

10 12 14 16 18 20
MHz
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>>y=pulse ref(1,5,5t); ————>
>>yf2 = FourierT(y, dt); |
>> plot(f(1:100), abs(yf2(1:100))) o

“0 05 1 15 2 25 3 35 4 45 5

psec

0.5 -
Somewhat more 04!
narrow band pulse 0
(only0-20MHz 03]
shown) I

0.2

017

00 2 4 6 8

10 12 14 16 18
MHz

20

If we increase the amount of “ringing” in the signal by making N larger ( N =5) we see a

somewhat narrower bandwidth for the spectrum.
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2
>>y=pulse ref(1,5,10,t); ——*
>> yf3 = FourierT(y, dt); !

>> plot(f(1:100), abs(yf3(1:100)))  ©

psec
1
Decrease bandwidth gt n
even more
0.6
(only 0 - 20 MHz
shown) 0'47
0-27 J L
00 2 4 6 8 10 12 14 16 18 20

MHz

If we increase the amount of ringing even more ( N = 10) we see an even narrower
spectrum



Show plot in more detail Af is not quite adequate here
>> plot(f(1:50), abs(yf3(1:50))) Af=1/T=1/5 MHz

1 | R V4
08 1
06 1
04F 1

0.2r 1

0O 1 2 3 4 5 6 7 8 9 10
MHz

we can improve these results with zero padding of our signal

If we examine the spectrum of this narrowband signal on a finer scale we see that the
spectrum is jagged, indicating that our spacing in the frequency domain is not adequate.
We can use zero padding to improve the results, as we will now show.



Here we double the number of points with zero padding but keep the same sampling

frequency.

zero padding
>>t=s_space(0, 10, 1024);
>> y=pulse_ref(1, 5,10, t);
>> plot(t,y)
>>dt=1(2) -t(1)

dt=0.0098

recall, originally, we had
t=s_space(0,5, 512);

we could also zero pad via
t =[t, zeros(1, 512)];

1 2 3 456 7 8 9 10
usec

now, have 1024 points over 10

microseconds, so dt is same but

T = Ndt is twice as large
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>> yf4 = FourierT(y, dt); Improved representation of the
>>f=s_space(0, 1/dt, 1024); spectrum Af = 1/T =1/10 MHz
>> plot(f(1:100), abs(yf4(1:100)))

1.4

127 )

1t J

0.8/ )

0.6 )

0.4 ]

0.2 )

Now if we examine the spectrum we see a smoother signal. We can improve the results
even more by adding more zeros.



Fast Fourier Transform

| Vp(f) | N samples

AN

‘ negative frequency

positive frequency

components f components
max fs V(-f)=V (f) if w(t)is real
\Y
| p(f) | N samples ()* = complex conjugate
1

/ \ in time domain

positive frequency
components fmax fs

When we perform an FFT we see that in the frequency domain we obtain the positive
frequency components in the lower half of the spectrum and the negative frequency
components in the upper half of the spectrum. The negative frequency values are just the
complex conjugate of the positive frequency components so they do not contain any new
information. They exist solely to guarantee that the original time domain signal was a real
signal. What happens if we simply replace the negative frequency values by zeros and
then do an inverse FFT?



Fast Fourier Transform

o) = (V()exp(-2fr)if

10 L) THDexp(-2sfiny

!

Hilbert transform of v(t)
SO

wWt)=2 Re{ J?V( fexp(=27ift)df }

The answer is we obtain a complex signal where one half of our original time domain signal
is in the real part and the imaginary part contains minus one half of the Hilbert transform of
our original time domain signal. Thus, we can replace the upper half our spectrum by zeros
and recover our original real time domain signal by just taking twice the real part of the
inverse FFT of the remaining positive frequency components.
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Zero out negative frequency components

>>t=s5 space(0,5, 512); 2

>>y = pulse_ref(1,5,10,t); _—

>> plot(t, y)

>> yf= FourierT(y, dt);

>>yf5 = yf .*(£< 50); -1

>> plot(f, abs(yf5)) 25 5 3 7 5
psec

1

zero negative 09

frequency components 08

0.7

. 0.6

now, do the inverse FFT
on just these positive 0af
frequency components o3
(and zeros in the upper °
half part of the spectrum) |

0 20 40 60 80 100 120
MHz

Here is an example where we compute the spectrum of signal and replace the negative
frequency values by zeros. However, what about the zero frequency value in the spectrum?
Do we consider it a positive or negative value? The answer is: we consider half of it positive
and half of it negative so that we divide the zero frequency value of the spectrum (if it is
non-zero) by two before we do an inverse FFT.



>>yf5(1) = yf5(1)/2; <« when throwing out negative frequency

>> y = 2*real(IFourierT(yf5, dt)); components, need to divide dc value

by half also (not needed if dc value is zero or
already very small but it is a good idea to always
do it)

>> plot(t, y)

0 1 2 3 4 5 “o 1 2 3 4 5
pusec psec
recovered signal

original signal from real frequency components

Here we see the zero frequency value being divided by two and then twice the real part of
the inverse FFT is calculated. We see we do recover the original signal
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Homework Problems

A.1,A2,8.0,S.1

Special homework problems and problems from Appendix A.
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Fast Fourier Transform

References

Walker, J.S., Fast Fourier Transforms, CRC Press, 1996

Burrus, C.S. and T.W. Parks, DFT/FFT and Convolution
Algorithms, John Wiley and Sons, New York, 1985.

There are many references on Fourier transforms and the fast Fourier transform. Here are
several of them.
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Impedance Concepts and
Thévenin Equivalent Systems

We will see several examples where the concept of impedance is important and examine
the concept of Thevenin equivalent systems.



Learning Objectives

Electrical impedance

Description of 1-D waves in a fluid
equation of motion/constitutive equation
plane waves - pulses and harmonic waves
frequency and wavelength
acoustic impedance

Thévenin equivalent electrical circuits

Electrical impedance is a property you may already be familiar with. We will see that
impedance is also defined for the waves present in ultrasonic system and examine some
basic characteristics of waves. Finally, we will discuss the concept of Thevenin equivalent

electrical circuits.



Concept of Impedance

basic circuit elements

resistor j%\/\/\—o V(t) =R I(t)
dV(t) _

capacitor o—] }— C 7 1 (t)

inductor o IYYY L V (t) =L—=

Some of the basic elements often seen in circuits include resistors, capacitors, and
inductors. In each of these elements we can define the relationship between the voltage
acting across the element in terms of the current flowing through the element.



For alternating (harmonic) voltages and currents

1) V(1) =V, exp(—iwt)

=1, exp(—iar) P Aﬂ

resistor —N\\—e Vo=R1,

]O
capacitor O—{ }—O Vo= —ioC
V, =—ioL I,

inductor o IYY YL,

general ] V,=Z (a))]
impedance ' ' @

electrical impedance Z = Z¢ (ohms)

For alternating voltages and currents we can relate the voltages and current in these
elements through a complex electrical impedance, Z, which in general can also be a
function of the frequency. We will place an e superscript on Z to indicate it an electrical
impedance and to distinguish it from other impedances we will discuss shortly.



1-D plane wave traveling wave in a fluid

plx, t) ... pressure in the fluid
p ... fluid density

ﬁf v, (x, 1) ... velocity
P — 3 b4 I dy + a_pdx
g ox
;1 + Vdz
) Z F =ma
op ov
—| p+—dbx |dydz + pdydz = pdxdydz —*
o ot
Equation of motion & — p%
ox ot

We will see that impedance is also defined for other types of non-electrical problems.
Since ultrasonic NDE involves waves propagating in fluids and solids, let us consider some
aspects of wave propagation before we define the concept of wave impedance. First, let us
consider the problem of waves propagating in a fluid where all the motion of the wave is in
the x-direction and the pressure in the wave only depends on x . Since the pressure is a
constant in the y-z plane this is a 1-D plane wave. If we examine Newtons law F = ma for a
small element of the fluid we can derive the equation of motion which relates the
derivative of the pressure to the acceleration of the fluid element.



du

b

dx

1-D wave
equation

p=-K

Constitutive equation

K ... compressibility of the fluid

ou,

ox U, ...displacement
ou, AV . .

=—— =relative change in volume

(volumetric strain)
o’p 0* (Ou, / ox)
ox’ ot

’p 1 a217_0 cf:\/K wave speed in the
yo,

ol o fluid

For an ideal fluid the pressure is linearly related to the displacement gradient of the
element which is also equal to the so-called volumetric strain. The proportionality constant
in this constitutive equation is called the compressibility, K, of the element. If we take the
derivative of Newtons law with respect to x and use the constitutive equation we arrive at
the 1-D wave equation for the pressure, where a new constant, called the wave speed,

appears.




1-D plane wave solutions

p:f(t—x/cf)+g(t+x/cf)

Harmonic waves

p=A(f)exp| -2rif (1=xlc;) |+ B(f)exp| 27 (t+x/ ¢, )]

The 1-D wave equation has 1-D traveling plane wave solutions where we can have pressure
waves defined by arbitrary functions that travel in the plus or minus x-direction. As a
special case we can let those functions be harmonic traveling waves.



Fourier transform pair

V()= [oexp(rfiyi
wW(t)= ifoV( f)exp(-27ift)df

Let V(f)=I7(f)exp[27rif(x/cf)] (1)

then v(t)zTI}(f)exmef(x/c/ —tﬂdf

-0

1-D plane harmonic wave traveling in the +x-direction

Thus, v(2) is a superposition of plane waves

Now let us examine the Fourier transform and inverse Fourier transforms for a spectrum
that has the particular harmonic wave form shown in Eq. (1). Then we see the inverse
Fourier transform represents a superposition of 1-D traveling harmonic waves. What is the
corresponding time domain signal that we recover from this inverse Fourier transform?



Now, let u=(t—x/cf)

+00

Then [ V(f)exp[-2rifiu]df = (u)=(t-x/c,)

where V(1) oV (/)
)

+00

F(e-x/c,)= | V(f)exp[sz(x/c, —z)]df

—o0

Thus, we can always synthesize a traveling plane wave pulse
with a superposition of harmonic plane waves.

By simply changing to a different variable we can see that if a time domain waveform v(t)
has a frequency domain spectrum V(f) then if we superimpose traveling harmonic waves
with amplitude V(f) we recover from the inverse FFT a traveling pulse with the same
waveform as v. This is shown above for a wave traveling in the plus x-direction but a similar
result holds for a wave traveling in the negative x-direction. Thus, we can always work with
harmonic waves in describing NDE systems since we can recover the corresponding pulses
present in those systems simply by performing an inverse FFT of the harmonic wave
solutions.



various forms of a harmonic plane wave
traveling in the +x-direction

p=Aexp (27rifx/c_/. - 27rift)

=Aexp(27riﬁc/cf—ia)t) f=wl2x
» = Aexp(ikx—iot) k=w/c,
= Aexp(2zix/ A—iwt) A=2nlk=c,lf

f ... frequency (cycles/sec)
o ...frequency (rad/sec)
k ... wave number (rad/length)

A ...wavelength (length/cycle)

A traveling harmonic plane wave can be written in a number of different forms, all of which
are equivalent. The form indicated by the red arrow is one form uwe will use frequently in
solving wave problems.



p= Aexp(27rifx/cf —27zz'ft)

magnitude of the pressure at a fixed x versus time, t:

ANVANY
JN

| T... period (sec/cycle)
27ifT =27i (1)

1
- S =T frequency (cycles/sec)
w=2xf circular frequency (rad/sec)
!
rad/cycle

The period T of a harmonic wave is the time it takes for the waveform to go through a
complete cycle of 2it radians so by examining the phase term involving time in the wave (
see Eq. (1) ) as we hold x fixed we obtain the result that the frequency (in cycles/sec) is just
the reciprocal of the period. The circular frequency is just 2i times the frequency in
cycles/sec since there are 2m radians in a cycle.



p= Aexp(27riﬁc/cf - 27riﬁ)

magnitude of the pressure at a fixed time, t, versus distance, x:

ANVANN
JoN L

A ... wavelength (length/cycle)

1
f.= Z spatial frequency (cycles/length)

k=2rf = 2 spatial circular frequency
t A (wave number) (rad/length)

rad/cycle

If instead we hold the time fixed and plot the pressure versus x we again seen a sinusoidal
curve. The distance during one cycle is the wavelength which acts like the period does in
time so the reciprocal of the wavelength acts like a spatial frequency. If we multiply that
spatial frequency by 2it we get a spatial circular frequency called the wavenumber, k.



p= Aexp(27rifx/cf —27Z'iﬁ)

magnitude of the pressure at a fixed time, t, versus distance, x:

ANVANN
JoN L

A ... wavelength (length/cycle)
2rifAlc, =2mi

= s @ O

fundamental relationship that shows how the
frequency of a plane harmonic traveling wave is
related to its wavelength

If we hold the time fixed and vary the x-location over one complete cycle (2pi radians), by
definition we go through a distance, A , equal to the wavelength of the wave, so that from
Eq. (1) we find that the frequency (in cycles/sec) time the wavelength is just the wave
speed.



Example:

consider a SMHz plane wave traveling in water ( ¢ =1500m/sec).
What is the wave length?

B 1.5x10% mm /sec

 5x10%cycle/sec
=0.3mm/cycle

Here is an example of the wavelength for a 5 MHz wave traveling in water. Thus, we see the
wavelengths in NDE tests are typically quite small.
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For a plane pressure wave traveling in the x-direction

Litz ]; (=tt_ _xx/ /C :f) AG AG

then a_p:df_(u)é_uz_if,
Ox du Ox c

.
op % - ov, _ |

=P o e

v, ZLJf'atZLJ‘idu _ S _r
pc pc, du pc,  pe;

If we consider a plane wave traveling in the x-direction, we can place that plane wave into
Newton’s law and integrate to find the x-velocity, which we see is just proportional to the
pressure



p:pcfvx

S ...area

z* = pe specific acoustic impedance
of a plane wave (pressure/velocity)

F=pS=pcvS
F=Z%,

acoustic impedance
74 = pc .S @ of a plane wave
S .
(force/velocity)

For more general (harmonic) waves F =Z* (a)) v

The ratio of the pressure to the velocity is a quantity called the specific acoustic
impedance of the plane wave. If we multiply that specific acoustic impedance by an area of
the wavefront then the ratio of the force in the wave over that area to the velocity is called
the acoustic impedance of the plane wave. This impedance, F/v, plays the same role for the
wave as the voltage to current ratio, V/I, plays in an electrical circuit. To distinguish this
impedance, Z, from an electrical impedance we will place an “a” superscript on it to
indicate it is an acoustic impedance. Although the acoustic impedance of a plane wave is a
constant, for other types of waves the acoustic impedance, like the electrical impedance,
can be a function of the frequency.
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Thévenin equivalent circuit (harmonic voltages and currents)

Rl Cl I
Vi R, v o
‘FV\/ UM T T
RS L1
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, —

The reason that the concept of impedance is so important is because if we take a linear
electrical system of components, such as the one shown, we can replace it by an equivalent
system consisting only of a voltage source and an impedance, called a Thevenin equivalent
system. Both systems are equivalent because if both systems are terminated in some
fashion (as shown by the dotted lines) the voltage and current outputs are identical. We
will not prove this equivalence here.
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Determining the Thévenin equivalent source

V(o) Q Ze(@) Vo open-circuit voltage
| V.=V,

Determining the Thévenin equivalent impedance Vv =7°]
s L~ “eq

V, =R,

V() Q Zeq(®) R | L |
|

V
o ,n %]

We can determine the Thevenin equivalent system in two steps. First, if we measure the
open circuit output voltage of the system, this will just be the equivalent voltage source
acting. Then if we place a known impedance (such as the resistance shown above) at the
output and measure the output voltage across this known resistance, then we can find the
equivalent impedance as shown in Eq. (1) above.




Example: find the Thévenin equivalent circuit for
the following circuit

R

\ o CI

s——

As an example of determining a Thevenin equivalent system, consider a simple circuit
consisting of a known voltage source and a resistance and capacitance.
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R
HFV\NLOT
\/ EL ‘ V, open-circuit voltage

V,~V,=IR
I
—iwC

0

eliminating I, we find

|—iwRC Thévenin equivalent source

If we examine the voltages and current acting across the resistor and capacitor under open
circuit conditions then we can eliminate the current and obtain an expression for the open
circuit voltage, which is just the Thevenin equivalent voltage source.



V-V, =IR V, =LR V—(I‘_IZ)
i L~ "1 L — 2%\ L~ —la)C
v

i

S . V =
eliminating I, , I, gives . (l—ia)RC)+R/RL

SO (1) Zeq RL [%_IJ:RL{(I_I(CIORC);C{;/RL _1}
L 10}

R {(1iei/a)RI$C)} - (l—if)RC)

Similarly, if we place a known resistance at the output terminals and relate the voltages
across the resistances and capacitance to the currents flowing, we can eliminate those
currents and find the voltage ,V,, across the known resistance. Equation (1) then gives us
the Thevenin equivalent impedance



Vo) C

Thus, the original electrical system is equivalent to the Thevenin equivalent system shown.
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In many EE books the equivalent impedance is obtained
by simply shorting out (removing) the source and
examining the ratio V/I at the output port:

R [

VW —o—e=,
e

V=R(I-1)
_ — V=R(I+iaCV)
—ioC V(1-iwRC)=RI

vV R

“ I 1-iwRC

In an electrical engineering course on circuits you may see another approach to obtaining
the Thevenin equivalent impedance where we imagine shorting out the known source and
then simply examine the ratio of the output voltage and current. As shown above, this does
give the correct impedance but it obviously is not practical (or wise) to physically short out
the source in a real instrument. Experimentally, we must use the previous approach, which
only requires the measurement of V| and the open circuit voltage.

23



Homework problem

B.3

Homework problem from Appendix B.
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Pulser Characteristics
- Models and Measurements

This section will examine the pulser section of the pulser/receiver



Learning Objectives
characteristics of "spike" and square wave pulsers
measurement of pulser electrical properties

effects of pulser settings

We will examine two types of pulsers used in practice — a “spike” pulser and a square wave
pulser and discuss the measurement of the electrical characteristics of both of these types
of instruments. We will also show some examples of the effects of different pulser settings.



Pulser - Panametrics 5052 PR

( . A
rep rate energy attenuation h.p. filter
2 B 0.5 10
lothigh 104 O O out 2.0
damping gain (dB)
O 20 CZ@) 40
power TR ) s RCVR
\ J

pulse-echo setup

—C: transducer

Here is a diagram of a very simple pulser/receiver used in lab settings shown with an
attached transducer which is being used as both a sender and receiver of ultrasound. The
pulser settings on this instrument consist of the repetition rate setting, an energy level
setting, and a damping control.




Pulser - simple model of components

storage capacitor attenuation, gain

R (energy setting) and filter settings

WA | U
voltage C to
source )( 0 o display |

\Vj i et
CD rep_etitive %Ed recelver part
switch damplng
(rep rate) | setting

— transducer (actually
an equivalent network)

Here is a very basic model of what is in the pulser/receiver. A voltage source charges up a
capacitor which then is periodically discharged. The amount of capacitance, and hence the
energy stored, is controlled by the energy setting. The rep rate controls this discharge rate
by the rate at which a switch is closed. One may want to reduce the rep rate in cases where
one is inspecting a very large range of depths in a component so that all the flaw or other
responses being recorded have attenuated and so that there is no overlap between the
driving pulses and the received signal pulses. The damping setting controls a variable
resistor where a low setting is for a high resistance and vice-versa. Although the transducer
is a complex electromechanical device, because it consists of a piezoelectric crystal which is
plated on its faces, it acts to first order like a capacitor, which is how it is characterized
here. Obviously, the actual pulser circuits are much more complex than those shown here.



Pulser — Thevenin equivalent circuit

Z(w)
Vi(o) A
Vi(®) ... equivalent voltage source
Z(®) ... equivalent impedance

Even though the pulser circuits may be very complex, if we assume the pulser acts as a
linear system then we can replace it by a simpler Thevenin equivalent circuit consisting of a
voltage source and an impedance.



Pulser Modeling

Many modeling studies omit the impedance and take
the voltage source as a negative time-domain “spike”:

F 0 <0

our parameter

model: Vit)=1-V, [1 - exp(—alt)] 0<t<t,

(ty, 0,0, V,) ~Vyexp[-a,(t—1,)] =1,
A

A pulser such as the Panametrics 5052PR puts out very short “spikes” of voltage so it is
called a spike pulser. Some modeling studies try to simulate the pulser output with a
simple model such as the four parameter model shown here.



Pulser Modeling

-160

0.4 0.5

0.1 0.2 0.3

-200,
time, usec

Model pulse witht,=0.01, a; =0.2, a, = 50, V, =200

Here is an example of the voltage pulse generated with this four parameter model for a set
of parameters that mimic roughly what one sees as the output of the pulser: a downward
going spike of about .05 microseconds duration and about 200 volts in amplitude.



Pulser Modeling

Frequency spectrum calculated with FFT looks like:

IV

o

0 20 40 60 80 100 120 140 160 180 200
frequency, MHz

If one computes the frequency components of this pulse with an FFT, here is what the
magnitude of the frequency components look like.



>>t = linspace(0, 0.5, 512);

>>V = pulserVT(200, .005, 0.2, 50,t);
>> plot(t, V)

>> plot(t, c_shift(V, 100))

>>V = pulserVT(200, .01, 0.2, 50,t);
>> plot(t, c_shift(V, 100))

>> xlabel(' Time (\musec)")

>> ylabel('Voltage')

>>dt=1t(2) -t(1);

>> Vf=FourierT(V,dt);

>> = linspace(0, 1/dt, 512);

>> plot(f, abs(V{))

>> plot(f(1:100), abs(Vf(1:100)))

>> xlabel('frequency, Hz')

>> ylabel([V(D])

function V = pulserVT(VO0, t0, al, a2, t)

t=t+eps*(t==0);

Vinf = VO0/(1-exp(-al ¥t0));

V = -Vinf*(1- exp(-al *t)).*(t <= t0) -VO*exp(-a2*(t -t0)).*(t > t0);

Here is the MATLAB code that generates these time domain and frequency domain results.



Equivalent voltage spectrum in the frequency domain:

8 {l—exp [—(a1 —ia))toj} N Vv, {l—exp[ia)to]} _Vyexpliot, ]

o, —iw o o, —iw

/()=

A plot of the magnitude of this spectrum at the parameter values
listed previous looks like the previous plot:

However, we do not have to use the FFT to compute the frequency spectrum in this case
since we can analytically perform the Fourier transform, which is shown here



Here is a plot of the analytical Fourier transform which is indistinguishable from the FFT

result.

Pulser Modeling

V)l

o

0

20 40 60 80 100 120 140 160 180

frequency, MHz

200
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>> vff = pulserV(200, .01, 0.2,50,f);
>> plot(f(1:100), abs(vff(1:100)))
>> xlabel('frequency, Hz')

>> ylabel([V(f)[)

function Vout = pulserV(VO0, t0, al, a2, f)
f=f+ eps*(f==0);

Vinf = V0/(1 -exp(-al*t0));

argl =al - i*2*¥pi*f;

arg2 = a2 - i*2*pi*f;

-VO*exp(i*2*pi*f*t0)./arg2;

Vout = Vinf*(1-exp(-arg1*t0))./argl + Vinf*(1 -exp(i*2*pi*f*t0))./(i*2*pi*f) ...

Here is the MATLAB code for plotting this analytical result.
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Pulser — Panametrics 5052 PR

Output pulse of Panametrics 5052PR, energy setting = 1,
damping setting = 5, open output terminal

Pulser woltage output
z0 : - . - :

a
_zof
_4n|

-GO Energy 1

Woltage (V)

-g0} Damping 5

-100-

0 005 01 015 02 025 03 035 04 045 05
Time (us)

Here is the actual open circuit voltage measured for the Panametrics 5052PR
pulser/receiver at the indicated energy and damping settings. It looks very much like our
simulated four parameter mode. This is also the time domain voltage source in the
Thevenin equivalent model.



Pulser - Experimental

Measurement of pulser properties

Z(w) Z%(w)
Vi@) () Vo Vi(o) (i;, \'S
open circuit known load, R,
V.= V(o) Z(@)- {M -1 JRL
V(@)

We get the Thevenin equivalent voltage source in a Thevenin equivalent model from an
open circuit voltage measurement and we can likewise determine the Thevenin equivalent
electrical impedance by measuring the voltage across a known load, such as a resistance,
placed across the output.



Pulser — Panametrics 5052PR

Spike Pulser

A

Magnitude (V)

70

Damping 0

60

Energy 1

=== Energy 4

Magnitude (V)

Damping 7

Energy 1
——-— Energy 4

1‘0
f (MHz)

20

Here are some pulser voltage source measurements in the frequency domain taken at

different energy and damping settings
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Pulser — Panametrics 5052 PR

Spike Pulser

Z.e(a))

i

Similarly, here are some impedance measurements taken at different energy and damping

settings

Magnitude (Q)

Damping 0

N W A 9 N ® ©
S & & & 9 9 9 ©
S & & & & & o ©

100

Energy 1

=== Energy 4

Magnitude (Q)

30

25

20

Damping 7
Energy 1
=== Energy 4
Pl 7
—_ -~
0 10 15 20
f (MHz)
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Magnitude ()

850

Pulser — Panametrics 5052 PR

Damping effect

Spike Pulser

Z.‘(a))

i

800

700

600

500

400

300

200

100

~N 4+ ¢ o

Damping

Magnitude (Q)

2 3 s
f (MHz)

2000

I
—>

L4 — —

v, v, 4 &

- cable and o

. transducer
Loading effect

1800
1600
1400
1200

1000
800
600
400
200

~

10
f (MHz)

20

Energy 1
Zt(0)=5002(v, /v, 1)

_____ Z;e(a))=(V,v _Vm)/Im

To get a better picture of the effects of the damping setting on the measured Thevenin
equivalent impedance, on the left we see the frequency curves over a wide range of the
damping values (at an energy 1 setting).

On the right we show the impedance calculated by measuring the voltage, V|, across a 50
ohm resistor (solid line) at the output of the pulser as well as the impedance calculated
when a cable and transducer are attached to the pulser output and both the current and
voltage (V™, I™) at the output are measured (dashed line). In principle, we should get the
same result in either case but we do see some differences depending on the loading of the
pulser at its output port. In both cases V, is the Thevenin equivalent voltage source. Thus, it
might be advisable to conduct these measurements under loading conditions actually
present in an experiment.

17



Square Wave Pulser -UTEX 340

i
Fulse Valtage [V) Pulser
( ............. - ‘ S [
J I:[ l_ Save
Pulse Width s
(J— i ‘ Pulser Mods —I
PuseEcha =

------------------- Fhase

"Pu\se Fiepetitian Fiatz [Hz) Trigger Made

) e o [Eremal =]

Lows Pass Filter (MHz]

High Pass Filter (MHz)

"Hecelver Gain (dB

4

Another type of pulser/receiver commonly used in practice contains a square wave pulser
such as the UTEX 340. This instrument can be controlled from its front panel or from an
equivalent computer interface, as shown. In this case there are three pulser controls
consisting of the pulse repetition rate, the pulse width, and the pulse voltage. The gain
and high and low pass filter controls are for the receiver section.
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Square Wave Pulser -UTEX 320

Pulser source measured in open-circuit conditions

v, (1)
0
S - —
3 s g
£-100 E 3
g : ¢
_200 4 1 1100
‘ ‘ 0 ‘ ‘ ‘ o
0 005 01 015 02 0.25 ° ® oy g
t (usec)

Here is the measured open circuit voltage and its frequency components, showing the
square-like nature of the pulse in the time-domain



This shows as the pulse width widens the frequency domain response does become less

broad.

Magnitude (V)

Square Wave Pulser -UTEX 320

Square wave Pulser

|4 (a))

1

Pulse Width 0 Pulse Width 50

Magpnitude (V)

f (MHz)
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Square Wave Pulser -UTEX 320

Square wave Pulser

e
Z{ (o)
Pulse Width 0 Pulse Width 50
160
— 100V
140
-=-= 200V
120
g g 100
[) (0]
g S 80
£ 2
& 15 2 60
= =
10 g 40
5 — 20
% 5 10 15 20 % 5 10 15 20
f (MHz) f(MHz)

Here are some equivalent impedance measurements under different pulse width and pulse
amplitude settings.



Square Wave Pulser -UTEX 320

[ ] _
Square wave Pulser A
ZB(O)) —

i cable and

transducer
Pulse width effect Loading effect
220

200 ' /
180
1607
|
140
\ /
|
|

120
100
gol \ ~
60f \ -7

40

P e S

Magnitude (Q)
Magnitude (Q)

0 5 10 15 20 00 5 1‘0 15 20
f (MHz) f (MHz)
Voltage 100

— Zf(w)=500(, /v, -1)

----- z()=y,-v" ) 1"

On the left we see the effects of changing pulse width settings on the equivalent
impedance.

On the right we see the dependency of this impedance on the loading used at the output
terminal. Again, the first case (solid line) is where a 50 ohm resistor is placed at the output
and the voltage V| is measured, while the second case (dashed line) is where a cable and
transducer are attached an the voltage and current are both measured.
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Homework problem

2.1

Homework problem from chapter 2.
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Linear Electrical and Acoustic Systems
— Some Basic Concepts

Linear systems play an important role in modeling ultrasonic NDE systems so we will
discuss some of the basic concepts involved.



Learning Objectives

Two port systems
transfer matrices
impedance matrices
reciprocity

1-D compressional waves in a solid
equation of motion/constitutive equation
acoustic transfer matrix of a layer

Single Input-Single Output systems
LTT systems
impulse response, transfer functions
convolution/ deconvolution
Wiener filter

We will see that both two port systems and single input-output systems are important

types of systems for modeling ultrasonic systems for both the electrical and acoustic
components.



Two Port Systems R

Consider a simple system again: v WA

If we take off the voltage
source we are left with: R
\/\

This is an example of a
two port system: [ I,

S [ve

Here we see that an RC circuit with the voltage source removed can be modeled as a two
port electrical system where we can have a voltage and current acting at both the left and
right ends (ports) of the system.



v, ‘ (7] [ v,

Transfer matrix: {Vl} - {Tll Iy } {Vz}
I] 7—'2] 7—'22 12

Alternately, we can express this two port system
in terms of an impedance matrix:

L Iy=-1,

T | — {Vl}:|:211 Z12}{]1}
Vi [Z] [Vz £ Z, Zy [;

For a linear two port system the voltage and current flowing into the input port can be
related to the voltage and current flowing out of the output port through a 2x2 transfer
matrix. Similarly, we can model the two port system in terms of a 2X2 impedance matrix
where the voltages are related to the currents. However, in this case by convention we take

the currents as both flowing into the system, as shown.




1 o
A e
State(l):% V‘H (7] { VO B
¥ L@
c T
State (2): Vﬁz)[ [T] [ VZ(Z) b
Reciprocity
Vl(l)[l(z) _ VI(Z)]I(l) _ 1/2(1)]2(2) _ Vz(z)lz(l) @

Consider a two port system that is connected to two sets of other systems, producing what
are called states (1) and (2), as shown above. If the two port system is a reciprocal system
then these voltages and currents in these two states are related through a reciprocity
equation.



For reciprocal systems, the impedance matrix
is symmetric, i.e. and the determinant of the
transfer matrix is equal to one

Zn =2y det [T] = TnTzz _T12T21 =1

{K}:{Zn ZIZHII} {K}{Tu leHVz}
I/Z ZZI 222 12' Il T21 1—'22 12

Vl‘ [Z] { \E Vl‘ 7] [ \E

It can be shown that reciprocity implies that the impedance matrix of the two port system
is symmetric and that the determinant of the 2x2 transfer matrix is unity.



Relationship between transfer matrix components and
impedance matrix components (reciprocal system)

Z, (ZnZzz _lez)
A -
Z, Z

1 Z
T21 = > Tzz =2
Zp Zp

Note: I, #T1,

Since the impedance matrix and the transfer matrix both describe the same two port
system, they must be related. For a reciprocal system, here is how the transfer matrix
components are related to the impedance matrix components.



1-D plane compressional wave in an elastic solid

o . [ | dy Y+5O'x dr O, ...stress
* . oo y - displacement
dz x
dx
a 2
(av 1+ 99 dxj dydz — o dydz = padvdz> Y
oOx : ot
do, o o’u,
- 2
Ox ot compressional (P)
Constitutive equation wave speed
o E(1v)
o (1+v)(1-2v) ox o = E(1-v)
P
, Ou (I+v)(1-2v)p
=pCcp——
Ox

Previously, we examined 1-D plane waves traveling in a fluid. Now, consider a 1-D plane
compressional wave traveling in a solid where we assume the wave is traveling in the x-
direction and the only stress acting in that direction is a normal stress in the x-direction We
can again apply Newton’s law to relate the stress to the x-displacement. For the solid we
have a stress-strain constitutive equation as shown, which can be written in terms of
Youngs modulus, E, and Poisson’s ratio, v, or equivalently, in terms of the density ,p, and
the wave speed, c, , for compressional waves



o’u 1 ou,

X

2 2 2
ox~ ¢, Ot

displacement
u, x) = Aexp [ikpx - ia)t] + Bexp [—ikpx - ia)t]
vvil‘l‘l?;}z’, v, (x) =—iwAexpik,x —iwt|—iwBexp|—ik,x —iot]
stress 0, (x)=iwpcpAexp[ik,x —iot]|-iwpc,Bexp|—ik,x —iot]
. A
waves in a  — )
sohd layer compressive force
_ B _ F =-0.S
x=0 x=1 x x
/ (minus sign because

a positive stress is tensile)

acoustic impedance
of the layer

{FX(O)}{ cos k) —iZﬁin(wHW} Zi = pe,S

—isin(k,l)/ Z, cos (k) v, (1)

The wave speed c, is indeed the wave speed of this wave in the solid since when we place
the constitutive equation into Newton'’s law we get the wave equation for the displacement
where c, appears as the wave speed present.

Now, consider a combination of harmonic waves traveling in both the plus and minus x-
directions. Shown are the expressions for the displacement, velocity and stress due to
these waves. Such a combination of waves might exist, for example, in a solid layer of width
| where we have waves traveling in both directions due to reflections from the ends of the
layer. If we write the wave amplitudes A and B in terms of the compressive forces and
velocities acting at the ends of the layer then we can relate these compressive forces and
velocities at each end (port) to each other, producing the transfer matrix shown for this
acoustic two port system, whose elements are functions of wave number, the length, and
the acoustic impedance of the layer. The forces involved here are those forces generated
over an areas S on the faces of the layer.

Thus, transfer matrices and two port systems can represent both electrical elements and
acoustic wave elements of an NDE system.



Equivalent transfer matrices

I, I,
Vi mD T eee | IT Ty,
I, I

[7,]=[R][%] 7]

det[Tg} =det[7;]|det[T, | e det[T, | =1

If we connect a number of two port systems, then we can replace the entire collection of
the system by a single 2x2 transfer matrix that is simply the matrix product of the individual
transfer matrices. If the individual systems are reciprocal then the transfer matrix of the

collection will also be reciprocal.



When we specify termination conditions at both
ports of a two port system, we end up with a system
where single inputs and outputs are related:

(terminated with I=0 (open circiut

voltage source) —o—\/\/v\—of termination)
\£

SRS —~ @

If we connect the ends of a two port system to either known sources or terminating
impedances then the two port system reduces to a single input, single output system as
shown for example for this RC circuit where a voltage source is placed at one end and the
other end is left as an open circuit. In that case we see thesingle input, single output
system relates the open circuit output voltage to the input voltage source.

11



l(t):ch;(t)
SO d%(’)+%(t)_l/i(t)

dt RC RC

Note: V(t) is defined here in terms of V(t) only
implicitly as the solution of this differential equation, i.e.

Vy(t)=L[V(t)] L ... linear operator

If we examine this RC circuit in the time domain we see we can write down a differential
equation that gives the open circuit voltage in terms of the voltage source. This is a linear
differential equation whose solution can be written symbolically as a linear operator acting
on the voltage source to generate the open circuit voltage output.

12



An important class of these single input-output systems
is a linear time-shift invariant (LTI) system

i(t) o(t)

RN L —_—

it o ()=L[i(1)] if
0,(t)=L[i(1)] o(t)=L[i(t)]

then then
o(t) = L[ ai, (1) +asi, (1) ] o(t—1,)=L[i(t~1,)]
=alL [i1 (t)] +a,L [i2 (t):'

linearity

time-shift invariance

Since the linear operator transforms the input to the output it can be represented as a
single input, single output system as shown. Since the operator here is a linear operator, we
say this is a linear system where the inputs and outputs satisfy the linearity conditions
shown above. If a time shift at the input produces an identical time shift at the output,
then we say this is a linear time-shift invariant (LTI) system. Obviously, our RC circuit
example is an LTI system. We will assume the components of an ultrasonic NDE system can
be represented by LTI systems.

13



Impulse response of LTI systems and the convolution

integral
(fielta. 3(t) g(t) impulse response
unction I —  function
i(t) o(t)
NN L

An important characteristic of LTI systems is that if we consider a time domain delta
function as the input and let g(t) be the output of the system, called the impulse response
function, then the response of the LTI system to any input, i(t), can be written as the
convolution integral of that input with the impulse response function. Thus, the impulse
response function completely characterizes the LTI system.

14



response to the

~ _ linearity and time
thin rectangle Ao(t)zi(r)Arg(1-7)

shift invariance

total output o(t)

IR

Zi(z’)Az’g(z‘—r) linearity
<o (additivity)

= ji(z’)g(t—r)dz’

—0

This convolution integral result follows directly by considering an arbitrary input as the sum
of different strength delta functions (actually small width rectangles that approximate delta
functions) and using the linearity and time shift invariance properties of the LTI system to

write the output as a finite sum, which in the limit simply becomes the convolution
integral.



If

I(0)= ]:i(t)exp(iwz)dt
0(w)- Io(r)exp(ia)t)dt

400

G(a)) = jg(t)exp(ia)t)dt

If we calculate the Fourier transforms of the input function and the impulse response
function then one can show that the convolution integral relationship between the time
domain inputs and outputs of an LTI system reduces to a multiplication in the frequency

domain.



convolution in the frequency domain is just
(complex-valued) multiplication

We can write the convolution integral of the input and the impulse response function in the
two different equivalent forms shown . However, the input-output relationship is much
more conveniently calculated in the frequency domain where we need only to perform a
complex-valued multiplication. After the multiplication we can also recover the time
domain output signal through an inverse FFT.

17



(o) O(w)
— G(®) ] Gy(w) [ oo —| Gy(o) —

O(0)=G,(»)G, (@) G, (w)I()

The frequency components of the impulse response function
of an LTI system are also called the transfer function, # @), for the
system since this function "transfers" the inputs to the outputs:

(0) — Hw) — O(w)

Working in the frequency domain allows us to deal with a cascade of LTI systems that we
can replace by a single transfer function, which is just the Fourier transform of the impulse
response function for the entire system. Formally, the transfer function is just the ratio of
the output to the input in the frequency domain.



input voltage

Vi(®) flaw signal
l @/ V() output voltage
R
Pulser “ | Receiver
cabling
AAAAN cabling
Transducer Q @
(transmitter) Transducer
(receiving)
Fy( p(®)
output force force on receiver

As an example of such a cascade of LTI systems, consider all the components of an
ultrasonic NDE immersion system. We can consider the output to be the frequency
components of the received flaw signal and the input to be the Thevenin equivalent voltage
source of the pulser. Then we can write the output in terms of the input multiplied by three
transfer functions that represent the sound generation process (pulser, cable, sending
transducer), the wave propagation and scattering processes between the transducers, and
the sound reception process (receiving transducer, cabling, and receiver). We will see later
we can model all these transfer functions so we have a complete model of the entire
ultrasonic NDE measurement system.
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Deconvolution

deconvolution in the frequency domain is just
(complex-valued) division ... but it must be
done with care

Go) -7t @

I(w)

Generally, a Wiener filter is used in ultrasonics applications
to desensitize the division process to noise

G(w)=

*

O(a))l (a)) ()"= complex

‘](a))‘z + 22 max {‘](w)r} conjugate

small "noise" constant

In principle we can obtain the transfer function by dividing the frequency components of a
measured output by the frequency components of a measured input. However, while
convolution, which involves multiplication in the frequency domain, is well behaved,
division in the frequency domain (also called deconvolution) can be contaminated by
noise, rendering the results invalid. To avoid this we use a filter to handle this problem. In
ultrasonic NDE we generally use a Wiener filter which has a small noise constant, ¢, that

we must choose.
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It is easier to see the Wiener filter if we rewrite the
deconvolution in the form

6()- 2Ll

(o) ‘I(a))‘z +&” max {‘](a))‘z}

- y(w) O

()
W(iw)=
( ) ‘I(a))‘z + &’ max {‘](a))r}

Wiener filter

where

We can see the effects of the Wiener filter more clearly by writing the deconvolution as a
product of the ordinary division by a function W that represents the filter. We will show the
behavior of W on the next slide. However, note that we must not implement the

deconvolution in the form of Eq. (1) above but must use the original form shown on the
previous page.



MATLAB example showing effects of choice of €

>> f'= linspace(0, 10, 200); s
5> [= £5(f<5) +(10-0).5(£>5): I .
>> plot(f, 1) 2
>>e =01, -
>>W =12./1/2 + e"2*max(1."2)); !
>> plot(f, W)
> hold on e

>>e=1; 1 —— ——
5> W = LA2A1A2 + " 2*max(1."2)); 00 \ \
>> plot(f, W) & !

>>xlabel(' frequency, f') o /
>> ylabel(' W')
>> hold off W

Here is an example where we model the input function as a simple triangular function. We
see that the Wiener filter W for small values of the constant e is near unity so the Wiener
filter does not modify the ordinary division process except at the ends where the input
function becomes small. At places where the input is small, noise can contaminate the

deconvolution result so the Wiener filter prevents those places from dominating the result.
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Homework problems

C2,C3

Homework problems from Appendix C.
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Cabling - Models and Measurements

Cabling can play a role in the measurement process for an ultrasonic NDE system so we will
discuss the effects of cabling here in some detail.



Learning Objectives

Cable transfer matrix model

Equivalent circuit model

Effects of termination conditions
Measurement of transfer matrix elements
Reciprocity check

We will model a cable as a two port system and show the effects of having different
termination conditions. We will describe how we can measure the transfer elements of the
cable directly and check to see if it acts as a reciprocal system.



Cable — transfer matrix model

== L v
2

vil |l m| v

Transfer matrix from a simple 1-D transmission line model

5 Bhvio sl

At a fundamental level we can consider modeling the propagating electric and magnetic
fields in a coaxial cable. However, we can use a simpler transmission line model where we
consider the cable as a two port system that relates the voltages and currents at its ends
though a 2x2 transfer matrix of components that depends on an electrical impedance of
the cable, its length, and the wavenumber (or frequency).



Cable — transfer matrix model

I @j V2
I

"G

:f/

=

[ = length of cable
k, = ®/c = wave number (c = wave speed)

Z; = electrical impedance

For an ideal coaxial cable: Z o= 2L \/Z In (éj
I a

@b € ... permittivity

K ... permeability

For an ideal circular coaxial cable we can write down an explicit expression for the
impedance in terms of the radii of the inner and outer conductors and the electromagnetic
properties of the material between those conductors.



Cable — transfer matrix model

Equivalent circuit model of the transmission line model

I e I
Ly -iZgtankl2) 7 tan(ki2) 2

1 ]
Vi I ﬁ-izg / sin(k1/2) Vs

Other equivalent circuits are also used

We can also represent the cable as two port system involving equivalent circuit
components. The “T” type of equivalent circuit shown above is a popular choice but there
are other equivalent circuits that can be used as well.



Cable — transfer matrix model

Effects of different termination conditions

I, LN

vl m Bz g

7z =

1

n
Il

(]

1

Amplitude of Z° /27

1
Dﬁ

a1 0.z 0.3 0.4 0.5 0.6 0.7 0.a 0.4 1
Hi(Rad)

If we consider a cable that is terminated at one end, then we can characterize the
terminated cable as an equivalent impedance, and by examining the ratio of the input
voltage to the input current we can evaluate that equivalent impedance. Show are three
cases where the cable is terminated by an impedance equal to the characteristic
impedance of the cable and where the termination is either open circuit or closed circuit.



Cable — transfer matrix model

Cable impedance measurements under different terminations

Input impedances of a cable

S00

00 Open-circuited

502 terminator

@
-1
3

Shont- circuited

Amplitude ()
= ~
2 =3
8 8

ol |
S

)

15

200
150
100 }

sof i -

Phase (Degs)
o
“{
¥

.1uor' = s
=150
-200

Frequency (MHz)

Here are some actual measurements of the magnitude and phase of the equivalent
impedance of a 50 ohm coaxial cable when it is terminated by a 50 ohm resistor or is under
open or closed circuit conditions. The equivalent impedance is measured by taking the ratio

of the measured input voltage to the measured input current.



Cable — transfer matrix model

Measuring the transfer matrix components

I, L
villm | v v m| ]t
open circuit short circuit
Ty =1,/ Ve T, =1,/1

By making various voltage and current measurements under different termination
conditions we can also measure the individual elements of the 2x2 transfer matrix that
characterizes the cable as a two port system.



Cable — transfer matrix model
Measured cable transfer components
e Amplitude G Phase (Degs)
1 Pr—— XX " -
S \-,_H;_ of Vol Mg o
0s T bl A
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Here are the results of those measurements. It can be seen that the magnitudes of the T11
and T22 components have a cosine like behavior while the magnitudes of the T12 and T21
have a sine like behavior, consistent with the transmission line model. The phases also are
consistent with that model



Cable — transfer matrix model

Amplitude
=
=

Reciprocity Check

Determinant of TS

1.06 F

o
~
T

098

0.96

Amplitude 3

(amplitude)

5 10 15 20
Frequency (MHz)

ideal reciprocal system

ideal reciprocal
system (phase)

Phase (Degs)

If we evaluate the determinant of the 2x2 transfer matrix we do get nearly a real value of

unity for all frequencies, demonstrating the cable indeed is reciprocal.
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Homework problems

3.1,32

Homework problems from Chapter 3.
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Cable — transfer matrix model

Staelin, D.H., Morgenthaler, A.W., and J. Kong,
Electromagnetic Waves,Prentice-Hall, 1994.

Balanis, C.A., Advanced Engineering Electromagnetics,
John Wiley, 1989.

Bladel, J.V., Electromagnetic Fields, Hemisphere Publuishing
Co., 1985.

Pozar, D.M., Microwave Engineering, John Wiley, 1998.

Karmel, P.R., Colef, G.D., and R.L. Camisa, Introduction to
Electromagnetic and Microwave Engineering, John Wiley, 1998.

Cables are discussed in a variety of EE texts. Here are some representative ones.
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Transducer Modeling

Transducers are obviously a very important part of any ultrasonic system. Here we examine
models of a transducer when it is used to generate ultrasound.



Learning Objectives
Two port and three port transducer models
Sittig model
Mason model
KLM Model
Acoustic radiation impedance

Transducer sensitivity, impedance

The sound generation process

There are a variety of transducer models available that we will examine. We will see that
three key parameters associated with the transducer are the acoustic radiation impedance,
its electrical impedance and its sensitivity. In this section we will also combine our pulser,
cabling and transducer models into a complete representation of the sound generation
process in an ultrasonic setup.



Transducer model - fields

Consider a P-wave
immersion v
transducer:

"
|

n  pressure,
S velocity fields

Reciprocity :

We can consider a sending immersion transducer as a “mixed” model where we take the
electrical inputs as lumped parameters of voltage and current but take the outputs as the
pressure and velocity fields on the face of the transducer in contact with the fluid. If we
assume the transducer is a reciprocal device then we can relate these parameters through
the reciprocity relation of Eq. (1)



Transducer model- ‘lumped’ parameters

compressive force

voltage p — ‘ § I%_’\
current velocity, v(x,m)

pressure, p(X,®)

For
piston v(x,0)=v(®)n
behavior )= Jp(x"”)ds

Ip(x,a))v(x,a)) ndS=F(o)v(o)
so reciprocity becomes:

y@ 70 _ )70 _ p@) 0 _ p0),)

If we assume the velocity of the transducer face is a constant, then this is a “piston”
transducer model and we can replace the integrals of the pressure fields in the reciprocity
relations by compressive force terms and write the reciprocity relationship entirely in terms
of lumped quantities of (voltage, current) and (force, velocity)



Transducer model - transfer matrix

force

F
rigf A = .
I v velocity

2-Port Transducer Model

— —

V} [TA] }F

Ly G |[F y
T N det[7]=1
21 22

From reciprocity

If the transducer is a linear, reciprocal device we can thus relate the lumped inputs and
outputs through a two port 2x2 transfer matrix whose determinant must be equal to one.



Transducer model - transfer matrix

VI [TA] 7IF

Sittig model: [TAJ = [TQA] [YZ,A]
1/n  nlioC,
&'} [—iwCo 0 }
o 1 23 +iz§ cot(kd) (24 +iZZ{ cot(kd)
Zy —iZ; tan(kd / 2) 1 73 —2iZ tan(kd / 2)

There is an explicit model of the transducer 2x2 transfer matrix called the Sittig model,
where the overall transfer matrix is written in terms of the product of two separate transfer
matrices, as shown.



Transducer model - transfer matrix

k=wlv, wave number of piezoelectric plate
v, = 163133 /p, wave speed of the plate, defined in terms of:
P plate elastic constant at constant flux density

33
P, plate density
n=hy,C, constant, defined in terms of:
hy, plate stiffness
C,=S/pd clamped capacitance, defined in terms of:
S,d plate area, thickness

D
B plate dielectric impermeability at constant
strain
Z8 = pv,S plate acoustic impedance
P

zt backing acoustic impedance

There are many parameters in the Sittig model since the transducer is inherently a complex
electromechanical device.



Transducer - three port model

| A%
1 v1 i

Frovi E’% T sz
v, T

Plating transducer crystal F,
(thickness neglected)

3x3 impedance matrix
K Zy cot(kl) Zy /sin(kl) hy/ o |[v
Fo=il Zy /sin(kl) Zjcot(kl) hy/o [{v,
14 hy | @ hyy | @ /oG (| 1

The Sittig model assumes the piezoelectric crystal in the transducer has some material
backing on its inside face. If we do not include such backing in a transducer model then we
can consider the transducer as a three port system where we have the driving electrical
port and acoustic ports on both the front and back faces of the crystal. For such a three
port system we can model the system through a 3x3 impedance matrix. Such a system is
very useful when we want to design a transducer with specific characteristics as we can
also change the backing on the crystal as part of the design.



Transducer - Mason equivalent circuit

Vi -iZitan(kl2)  -iZgtan(kl2) v,

L 1 L 1

iz, /sin(kl)

I
- -G I:n
v |

|
Co

One frequently used equivalent circuit model of such a three port system is the Mason
model shown here. Some designers do not like this model because it includes a non-
physical negative capacitance term.



Transducer - KLM equivalent circuit model

Vi, e %
F F
1 ‘ z: z :
I ix
=} 1
C b= ——
‘ 2M sin(k1/2)
1:¢

X = Z, M2 sin(kl)
M = hy; / (0Zg)

Another equivalent three port circuit model of a transducer is the KLM model.
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Sittig model with crystal facing layers

Commercial transducer:
[TA]=[TA] [TA] [T'] ..

Backing (Za) crystal\ facing layers
i (epoxy bonding, wear plate, etc.)

A4
—

V2
Acoustic layer: F, T [T 7 F,

K\ | cos(k,l,) —iZ§ sin(k,l,) |[ F
v | =isin(k,)/ Z¢ cos(hud,) (v

The Sittig, Mason, and KLM model have all been successfully used for designing ultrasonic
transducers. Because the Sittig model involves 2x2 transfer matrices, it is particularly easy
to add elements such as wear plates since we have seen that such acoustic layers can be
characterized as 2x2 acoustic transfer matrices that can simply be concatenated through
multiplication with the other transfer matrices.
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Transducer — radiation into a fluid

—o

At the acoustic port the force and velocity parameters
are not independent. We can write  F, (a)) =7 (a))v(a))

A, . .. .
Z™ .. acoustic radiation impedance (a "lumped"parameter
that depends on the velocity and pressure distribution
at the acoustic port, the port geometry, and the fluid properties)
1 v

— —

V[ [T |F, ﬁ]Zj““

When an immersion transducer is used in practice, its acoustic output port is always
inherently terminated, i.e. the output compressive force and the velocity are related to one
another through an acoustic radiation impedance. This acoustic impedance is a function of
the acoustic waves radiated by the transducer so we will have to discuss some elements of
those acoustic waves, which we will do here briefly. Later, we will examine those waves in
more detail and justify some of the results that are simply given here.
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Acoustic radiation impedance

Rayleigh-Sommerfeld integral model of radiation of
waves into a fluid by a piston transducer

v((g) AAAAL

o... fluid density y=
c ... fluid wave speed — X
k=wlc
—iew pv(®) ¢ exp (ikr)
, W)= ds
pressure  p(X,®) g _S[ , (y)
r=x-yl|
jp(x,a))dS . .
af N _—iwp | pexp(ikr)
Z: (w)= R S{! p dS(y)}dS(x)

As we will see later we can model the pressure waves generated in a fluid by a piston
transducer in terms of a Rayleigh-Sommerfeld integral (also called a Rayleigh integral by
some authors) over the face of the transducer. Since the compressive force generated is an
integral of this pressure over the face of the transducer, we can write an explicit expression
for the acoustic radiation impedance in terms of two surface integrals.

13



Acoustic radiation impedance

Greenspan, 1979: showed that for a circular piston transducer
of radius a the acoustic radiation impedance obtained from
the Rayleigh-Sommerfeld model could be found explicitly in
the form

Z | peS, =1-[ J,(2ka)~iS, (2ka) |/ ka
J, ... Bessel function

S, ... Struve function

= g2
S,=mna

However, we do not have to do those integrals directly since Greenspan has shown that for
a circular piston transducer we can express those integrals in terms of a Bessel function
and a Struve function, which are two well-known special functions whose numerical
evaluation is straightforward.
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Acoustic radiation impedance

Greenspan model of a circular piston transducer

1.4

ZA;u
pes,

0 é ‘I‘O 15 éO 25
ka
>> ka=linspace(0, 25, 100);
>>ka = ka + eps*( ka ==0);
>> 7 =1 -(besselj(1,2*ka)-i*struve(2*ka))./ka;
>> plot(ka, abs(Z))

Here is a plot of the normalized radiation impedance of a circular piston transducer of
radius a, as a function of the nondimensional wavenumber (frequency). We see at larger ka
values the acoustic radiation impedance becomes nearly a constant. Here S, is the area of
the face of the transducer. Shown also is the MATLAB code used for evaluation of this plot.
The Bessel function can be calculated with a built-in MATLAB function besselj. The struve

function will be given on the next slide.
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Acoustic radiation impedance

function y = struve(z)

num = length(z);

y=zeros(1,num);

for k = 1:num

y(k) = quadl(@struve_arg, 0, 1, [ 1.[ 1, z(k));
end

function y = struve_arg(x, z)
y = (4./pi).*z.*¥x."2. *sin(z.*(1-x."2)).*sqrt(2-x."2);

l this uses
1
Sl(z)=§'|'\/1—t2 sin(zt)dt t=1-x"
V4

0

=%'(i;x2 sin[z(l—xz)}/Z—xzdx

Here is the evaluation of the Struve function in MATLAB.
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Acoustic radiation impedance

pressure distribution
F
\%
A .
velocity

Most NDE transducers operate at high frequencies
(ka>>1). At such high frequencies, if we can
assume piston behavior, for any shaped transducer it
can be shown that

Z5 = pcS, @

T

density, wave speed, area

Most NDE transducers operate at high frequencies and we can show that in fact the
acoustic radiation impedance for any such high frequency transducer (not just a circular
one) is equal to the acoustic plane wave impedance, which is the product of the density of
the fluid times its wave speed times the area of the face of the transducer. Since this
acoustic radiation impedance is a known constant, when dealing with a sending transducer
we can always treat it as a terminated system where we know the value of that acoustic
termination.
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Sensitivity, Impedance

AAAAL
]
L A Aﬁ
—
L, Vv,

the electrical characteristics of the transducer
can be completely described by its input
impedance:

zie =t

in __

Asarn A A

V, _ ZMT T

in Asarp A A
1, Z T 4T

mn

Unlike a cable, it is very difficult to measure the 2x2 transfer matrix that characterizes a
transducer because one port is an acoustic port where it is not simple to measure either
force or velocity. However, because the transducer is always terminated with a known
acoustic impedance, as shown above, we will see that we do not have to measure all the
transfer components directly. For example, we can easily measure the voltage and current
at the input electrical port, whose ratio gives us the transducer electrical impedance. This
electrical impedance tells us how the transducer electrically terminates the cable it is

connected to.
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Sensitivity, Impedance

AAA AL

%—

to describe the conversion of electrical signals
into acoustic signals, we could use the

\ I
transducer's sensitivity, S,,, where S, =—

in

<LTN’11

~

]

Vill
I — A I
]

O ... an output (force or velocity)
I ... an input (voltage or current)

The particular sensitivity we will use is:

v 1
Sy=—Lt=

L, ZMTi+T

in

If, in addition to knowing the electrical termination (impedance) characteristics of the
transducer, we also have a measure of how the electrical signals are converted into output
force or velocity, then we will have described the ability of the transducer to generate its
acoustic output from the electrical signals. We can, for example, specify a transducer
sensitivity as a ratio of an output (force or velocity) to an input (voltage or current). The
specific sensitivity we will use is the ratio of the output velocity to the input current. Shown
above is this sensitivity in terms of the transfer matrix components.
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Sensitivity, Impedance

_AALA AL

: F

— _ Asa
Vi Il_.[m A — F=2Z"",
in )

All the other sensitivities can be found from this sensitivity

if the transducer electrical impedance and acoustic radiation

impedance are known: ¢4 _ Y
vl

=

si= =705,
v e
S»AV :V_t_ S\j /Zi//j’
F .a ”
St =D=zosiiz

Our choice of sensitivity was arbitrary but any other transducer sensitivity we might want
to define can be obtained from this one (and the electrical and acoustic impedances) so

this particular choice is all we need.



Sensitivity, Impedance

AAA AL
e
v, £
I, —— A I‘j
B

Thus, we can replace the transfer matrix model of the transducer
by a model consisting of an electrical impedance and an ideal
"converter" that is defined by the transducer sensitivity:

}

oA
vt - SV[Iin
V. ZA;e

in
__ rzdia g4
F;‘ - Zr Svllin

If we know the electrical impedance and sensitivity we can bypass knowing the 2x2 transfer
matrix components and simply and completely model the sending transducer as this
impedance and sensitivity combination. Later, we will show that like the electrical
impedance of the transducer we can easily measure its sensitivity with purely electrical
measurements.



Entire Sound Generation Process

pulser
cable
TR B
Thevenin transmitting output
input voltage transducer force
transducer

sound generation
transfer function

We now can combine our pulser, cabling, and sending transducer models together and
combine all these components into a single sound generation transfer function.
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Entire Sound Generation Process

pulser
cable
ol o e o
Thevenin transmitting output
input voltage transducer force

V(@) > 1, (0) = F()

sound generation
transfer function

_E(o) zs; @
lg (a)) Y

(@) (25T, +T,)+(Z5T, +T,) Zf

cable transfer function component(s)

Here is the explicit expression for this sound generation transfer function in terms
guantities that are all either known or obtainable with electrical measurements.
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Wave Propagation Fundamentals -1
Propagation of Plane and Spherical Waves

Propagating waves are a key part of an ultrasonic NDE measurement system. Plane waves
and spherical waves serve as fundamental building blocks for describing the waves seen in
NDE tests so we will examine those waves here.



Learning Objectives
Plane waves in fluids and solids
Elastic wave potentials

Spherical waves in fluids and solids

We will examine both plane waves and spherical waves in both fluid and elastic media.



Plane Waves - Fluid

Waves in a fluid satisfy the wave equation

2, 10 _
¢ or
pP= f~ (t -x/ c) is an arbitrary plane wave"pulse" solution
of the wave equation traveling in the + x direction.

The function p= F(f)exp[27rif(x/c —t)] is a harmonic
plane wave traveling in the + x direction.

They are simply related through the Fourier Transform:

amplitude phase

R

t x/c =T exp[Zm'f(x/c—t)}df

We have seen before that the pressure waves in a fluid satisfy the wave equation. We also
saw that we could write down the general solutions of plane waves in the fluid either as
pulses in the time domain or as harmonic waves in the frequency domain and we can
relate those two domains through the Fourier transform.



Plane Waves-Fluid

we saw previously we can write a plane harmonic wave in
different forms:

F(f)exp[27if (x /¢ - 1)]
= F(f)exp|ik(x —ct)]
= F(w)explio(x/ c—1)]

For the last form we can also write

flt—x/c) =%Z?F(a))exp[ia)(x le—t)Hao

We also saw previously that we could write propagating plane harmonic waves in terms of
different parameters. For solving wave problem we will generally use the forms shown
above where we either use the frequency in cycles/sec or in rad/sec.



Plane Waves-Fluid

Summary: for a harmonic wave of exp(—iar) time
dependency, a plane wave traveling in the * x direction

is given by (dropping the common time term)
Fexp[+27ifx/c]
= Fexp[tiox/c]
= Fexp|tikx]

For a plane wave traveling in an arbitrary direction , n
% n-x = constant  Fexp[ikn-x]
n plane = Fexp[ik-x]

where K=k n is called the
wavenumber vector

Since all the harmonic waves have the same time dependency, which here is exp(-iwt),
generally we will drop that common term and assume it is always implicitly present. All our
plane wave results shown are for waves traveling in the plus or minus x-direction but we
can easily write similar plane wave solutions for a wave traveling in an arbitrary direction,
n, in three dimensions.



Plane Waves - Fluid and Solid Media

Waves in a fluid are governed by the scalar wave equation

n (direction of propagation)

1
VP8

82
£=0
¢ ot

J p=f(t—x-n/c)

Waves in an isotropic elastic solid are governed by the
vector Navier's equations
Fu u ... displacement vector
WNVu+(A+u)V(V-u)- p—=0 A, ... Lame constants
ot p ... density

Here we show a general plane wave traveling in a fluid, where it is satisfies the scalar wave
equation for the pressure. In an elastic solid, general waves are governed by Navier’s
equations for the displacements, not a wave equation directly. Navier’s equations depend
on the density, p, of the solid and two elastic Lame constants, A, and p.



Plane Waves-Solid

o’u

—=0
ot
Navier's equations also have plane wave solutions. There are

two types — P-waves and S-waves. These are "bulk" waves.

AV u+(A+pV(V-u)-p

n

compressional _
(P) waves Q/(u “—?f(t—X-n/cp)
polarization
n |

shear u=nxdg(t—x-n/c,)
(S) waves d u

Like a fluid, Navier’s equations do have plane wave solutions. However, in a solid there are
actually two types of solutions called P-waves and S-waves, which differ in their direction
of displacement (called the polarization) and in their wave speed. The wave speed c,is the
P-wave speed and the wave speed c.is the S- (shear) wave speed. Since both types of these
waves travel in the bulk of a material, they are also called bulk waves. For most solids the
P-wave speed is about twice the S- wave speed.



Plane Waves-Solid
Polarizations

L Plane P-waves are longitudinally polarized
o in the direction of propagation

v Plane S-waves are polarized in the plane
perpendicular to the direction of propagation.

Vertically polarized S-waves are called
SV-waves while horizontally polarized
S-waves are called SH waves

Plane P-waves are polarized in the direction of propagation while plane S-waves have a
polarization in a plane perpendicular to the direction of propagation. If we take that
polarization plane as a vertical plane then we can consider either vertically polarized S-
waves, called SV-waves, or horizontally polarized S-waves called SH-waves.



Plane Waves-Solid

Bulk wave speeds

G=p

Compressional wave speed in a bar

Compressional wave speed in a plate  Cpue =

c = A+2u - E(l—v) E ... Young's modulus
’ Yo, (1 + V)(l - 21/),0 v ... Poisson's ratio

.. Shear Modulus

Bulk P- and S-waves travel with different wave speeds which can be written either in terms

of the Lame constants of the elastic solid or Young’s modulus,
S-waves we can also write the shear wave in terns of the shear modulus, G, which is related

to E and v.

We should note that if we generate waves traveling in thin geometries like bars or plates,
the P-waves travel with wave speeds different from the bulk wave speeds while the S-wave

E, and Poisson’s ratio , v. For

wave speed is unaffected. Shown are the P wave speeds for a bar and plate.




Plane Waves-Solid

o’u
NVu+(A+p)V(V-u)- py =0
Although Navier's equations are not wave equations, solutions
to Navier's equations can be found in terms of potential functions
that do satisfy wave equations

u=Vg+Vxy ¢ ... scalar potential
Yy ... vector potential

2
2¢ - L% =0 P-waves
Ci or’
1 o’y
Viy-—— =0 S-waves
v cl ot

In Navier’s equations we do not see directly wave equations. However, if we use the
Helmholtz decomposition and represent the displacement in terms of potentials, then we
do see separate wave equations for the P-waves and S-waves. Thus, solutions of elastic
wave problems are often obtained in terms of these potentials.

Note that P-waves are also called compressional waves, longitudinal (L-waves), pressure
waves, primary waves, dilatational waves, or irrotational waves while S-waves are also
called shear waves, tangential or transverse (T-waves), secondary waves, equivoluminal
waves, or rotational waves.

10



¢ G P pPC,

Material Compressional Shear Density Impedance
(P-wave) (S-wave) p (P-wave)
wave speed wave speed (kgm/m? x ( kgm/(m?>-s)
(m/s x 10%) (m/s x 10%) 10%) X 106)
Air 0.33 - 0.0012 0.0004
Aluminum 6.42 3.04 2.70 17.33
Brass 4.70 2.10 8.64 40.6
Copper 5.01 227 8.93 44.6
Glass 5.64 3.28 224 13.1
Lucite 2.70 1.10 1.15 3.1
Nickel 5.60 3.00 8.84 49.5
Steel, mild 5.90 3.20 7.90 46.0
Titanium 6.10 3.10 4.48 27.3
Tungsten 520 2.90 19.40 101.0
Water 1.48 - 1.00 1.48

Table D.1 Acoustical properties of some common materials.

In the S.I. system 1 Rayl = 1kg/m?-s so these values are in units of
109 Rayl or MRayl

Here is a short table illustrating the compressional and shear wave speeds, densities, and
the specific acoustic impedances for P-waves of some common materials. Generally we see
that compressional waves travel about twice as fast as shear waves. Also note that specific
acoustic impedances are often given in units of megaRayls (MRayl) which units are defined
above.



Plane Waves-Solid

Elastic Wave Potentials
u=Vg+Vxy

¢=¢(xayat)
.=yt y, =y, =0

For two-dimensional waves

displacements
stresses
B 2 2
u =99,V T, =H| KV P+2 a—w—%
Y oox Oy L Oxdy 0Oy
B 2 2
I PN -
Yoy ox ” | oxdy 0Ox
u. =0 r 2 2 2
: oy =] 20, Dy Oy
, ! | oxdy & oOx
K=

o

T, = V[rm + Tyy], T.=7,= 0

Potentials are often used to solve wave equations in elastic solids analytically. For 2-D
problems one only needs to use scalar P-wave and S-wave potentials and those potentials

(which are not physical quantities) can be related to the displacements and stresses as
shown.



Plane Waves-Solid

Plane wave solutions
U_,v.,T

X2 7 x% 7 xx

P-waves k =w/c —
r P

¢ =Dexp (ikpx — ia)t) potential
u =U, exp(ikpx - ia)t) displacement
v. =V exp(ikpx - ia)t) velocity
7. =T_exp (ikpx - ia)t) normal stress

U, =ik,®,V, =—ioU.,
Txx = _pchx

In an elastic solid we can consider plane P-wave solutions for the potential or we can
consider the corresponding solution in terms of the displacement, the velocity, or the
normal stress. All these waves have the same form where the amplitudes are related to
each other as shown. Note that the stress and velocity amplitude relationship is like that of
the pressure and velocity relationship except that there is a minus sign present because
normal stress is defined to be positive when it is a tensile stress.
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Plane Waves-Solid

S-waves
k,=w/c, »s\

s=e Xt
y =Ytexp (iksx —iwt ) potential
u=U sexp(ik,x—iot) displacement
v =Vsexp(ik,x—iwt) velocity

t.=T_exp (iksx — ia)t) shear stress

U =ik ¥,V =-ioU.,,
T,=-pclV,

In an elastic solid we can consider plane S-wave solutions for the potential or we can
consider the corresponding solution in terms of the displacement, the velocity, or the shear
stress. All these waves have the same form where the amplitudes are related to each other
as shown. Note that in the shear wave case the polarization vector of the potential and the
polarization vector of the displacement (or velocity) are different but they both lie in the

plane of the wavefront and can be related to each other.



Spherical Waves-Fluid

Spherical waves arise physically from "point" sources. If a
point source emits waves uniformly in all directions, then we
expect the waves to depend only on the radial distance, r , from
the point source.

Plane waves are important building blocks for modeling the propagation of waves. We will
see that spherical waves are likewise a key type of building block. Physically, a spherical
wave in a fluid can be though of as the waves arising from a point source that emits waves
uniformly in all directions so that the waves depend only on the radial distance from the

source.



Spherical Waves-Fluid

Consider spherical harmonic waves of exp(-iwt) time

dependency. The equation of motion of the fluid and the
wave equation are given by

-Vp=—iwpv
2
Vip+Zrp=0
c

In terms of the distance, r, from the source, in spherical
coordinates these equations are

op .
— =iwpv
or PV

2 2
0p 20 o

=0
or*  ror czp

For harmonic spherical waves in a fluid Newton’s law and the wave equation reduce to the

forms shown.
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Spherical Waves-Fluid

There are two solutions of the wave equation of the
form p= 4exp(z’kr) .8 exp(—ikr)

r r
k=w/c
The first term represents a wave traveling in the outward
radial direction while the second term represents a wave
converging on the source. Since the source only generates
outward going waves, we must set B = 0. The pressure and
radial velocity in the out going wave are then

p= éexp(ikr)
r

b= ﬁ[l—L} exp(ikr)
"ol ikr r

We can obtain solutions to the wave equation representing either outgoing waves from a
point source or spherical waves that converge to the point. For the outgoing waves we have
the forms shown for the pressure and velocity.



Spherical Waves-Fluid

In many cases we are only interested in the waves many
wavelengths from the source, in which case kr >> 1 and we
can write approximately

e Aexp(zkr) S
r r

b= A exp(ikr) H

r ﬂ:‘ 7’ \

Compare this to a plane wave traveling in the +z direction where

p = Aexp(ikz) , |
v, = L exp(ikz) —
oc

If we are primarily interested in the waves many wavelengths from the source, then the
factor kr >>1 and the pressure and velocity take the simpler forms shown above. These
look very similar to the plane wave case except for the 1/r spreading factor which is absent
in the plane wave case and causes the amplitude of the spherical wave to become smaller
as the distance from the source increases.

18



Spherical Waves-Elastic Solid

Spherical waves from point sources in an elastic solid have a
more complex structure in general, but for kr >>1 they are
similar to that of a fluid:

A exp(ikpr) B exp (ik,r)

P-wave

In elastic solids, P- and S- waves from a point source have a more complex behavior but for
kr >>1 the displacement in the waves has a radial dependency that looks much like that in
a fluid. The amplitudes are now vector quantities that are functions of the angles present in
a spherical coordinate system and have polarization vectors that are either in the radial
direction, A, of propagation (for P-waves) or in a direction, B, orthogonal to that radial
direction (for S-waves).
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Wave Propagation Fundamentals -2
Reflection and Transmission

NDE immersion tests involve multiple media (i.e. a fluid and solid) so it is important to
understand how waves reflect and transmit at the interfaces between different media.



Learning Objectives

Reflection and transmission coefficients
Snell's law
critical angles
acoustic impedance
amplitudes/intensities
inhomogeneous waves
Stokes' relations

Fluid-fluid and fluid-solid examples

In this section we will see how plane waves reflect and transmit at planar interfaces
between fluids or between fluids and elastic solids. It will be shown that there are a
number of important concepts that govern reflection/transmission behavior including
Snell’s law, critical angles, and Stokes relations. In some cases we will give detailed
derivation of results but in other cases we will simply state important results without proof.



Fluid-Fluid Problem
Pr>C e\e’ 9”,/ /er
1 \((\/(/
X
P25y toe,
X =xi+ yj
y
pressure in the:
incident wave P exp[ike, -x] e, =sindi+cosdj
reflected wave P explike, -x] e, =sinf.i—cosdj
transmitted wave £ explik,e, - x| e, =sinfi+cosdj

Consider the problem of the reflection of a plane pressure wave (traveling at an angle as
shown) from a plane interface between two different fluids. This case is normally not
encountered in practice but it will be a simple case that captures much of the physics
involved in more practical cases. An incident harmonic wave will generate reflected and
transmitted plane waves whose solutions we can write as indicated above., where we will
drop the common exp(-iwt) terms.



P15C e\gl ‘91‘//'/er
s
P56 t e
y

p, = Pexp[ ik, (xsin6, + ycos®,) |+ P, exp[ ik, (xsin 6, — y cos ), ) |
p, =P exp[ik,(xsin6,+ ycosd,)]

) ) 0 .
from the equation of motion —é =—iwpv, 50

(vy )1 = P’;Ocse’ exp| ik, (xsin 6, + ycosd,)] —P’;Lcsgfexp [ ik, (xsin@, - ycos )]
1-1 11
(vy )2 =P’LS‘9’exp[ik2 (xsin, + ycosd))]

P26y

In the first medium the incident and reflected waves are present while in the second
medium we only have a transmitted waves. From Newton’s law we can relate the derivative
of the pressure in the y-direction to the velocity component in that direction, so taking the
derivatives of the pressure expressions in the two media we can obtain the y-velocity
expressions for those media.



Boundary conditions:ony=0 1= P2

(Vy )1 - (vy )2

P exp(ik,xsin 6, )+ P, exp(ik,xsin 6, ) = P, exp (ik,xsin6,)

P cos, . P : A i
i Cosgz eXp(ik]xSHlel.)— r COSHF eXp(ik]x51n0,.):Mexp(ikaslnel)
foXes PG P&

Phase matching: 4, sin@, =k sin@, =k, sin6,

I:> 0-0 siné, _ sin 6,

¢ c,
angle of incidence ' @
= angle of reflection Snell's law

At the interface (y = 0) the pressure and the y-component of the velocity must be
continuous (but the x-component of the velocity need not be continuous because we are
modeling the fluids as ideal (i.e. non-viscous) fluids). Placing our pressure and velocity
expressions into these boundary conditions we obtain the two equations shown. Since we
must have these equations satisfied for all x we must have their phase terms all match
which leads to two results: the angle of incidence must be equal to the angle of
reflection, and the incident and transmitted wave angles must satisfy Snell’s law.



P+P =P
Poos, Peost, _Post,  cosh = 1% sin'g
— = t 2 i

c
P& Pi6 P26, :

Solving, we find the transmission and reflection
coefficients (pressure ratios)
T _h_ 2p,c,c0s0,
" P pc cosd, + p,c, cosb,
R B pye, cos6, — pic cos b,

"B pecosh + pyc,cosh,

or, in terms of velocity ratios (P = pcV)
r _V_ 2p,c,cosb,

"V, pecosb + p,c, cosb,
R - V. _po cosd, — p,c, cos b,

"V, pecos + p,c,cosb,

Eliminating the common phase terms gives us two equations for the reflected and
transmitted wave amplitudes which we can solve to determine the transmission and
reflection transmission components (based on pressure amplitude ratios). Using the plane
wave relationship between pressure and velocity amplitudes we can alternately express
those transmission and reflection coefficients in terms of velocity ratios.



Special Case - normal incidence

ma ||

A4
P26y j v

2pc, 2z

TP :7:’ = T _a a
PG TPzt

R, =R = 29 " AG L T4

a

a
Pt ez t+z;

73 =pc ... plane wave specific impedance

In the special case where the incident plane wave strikes the plane interface at normal
incidence the velocity based transmission and reflection coefficients are of a much simpler
form. We see that these coefficients are controlled by the plane wave specific acoustic
impedances.

If the second medium is a void (a free surface), then the reflection coefficient is just -1,
showing the incident wave is totally reflected with a change in sign. However, the velocity
polarization of the reflected wave was taken in this case to be in the —y direction so that
the y-velocity at the free surface is actually double that of the incident wave. In contrast,
the total pressure due to the incident and reflected wave amplitudes is zero, as it should be
since we have a free surface.

If the second medium is taken to be an infinitely rigid medium, then the reflection
coefficient is +1 and so the total y-velocity at the rigid interface is just zero. The pressures
of the incident and reflected waves, however, add so that the total pressure at the interface
is just double that of the incident wave.



Critical angle 6, =sin"'(¢, /¢,)

2
Let ¢, > ¢, . Then for ¢, <sin™ (2—1] cosf, = /1 _%Sinz 0
2 Cl

%}4 X P, = Pexp [ik2 (xsind, +ycosé, ):'
y B

transmitted plane wave

-] & 2
Whereas for 6, > sin (Czj cosd, = isgnw {c—ésinzﬁi—l
G
{+1 >0
sgnm =
_|a)|y C; .2 . .
p, =PBexp| —— | Zsin’ 0, -1 |exp(ikxsin6))
: X c2 c]

-1 w<0
y inhomogeneous wave @

If the wave speed of the second medium is higher than the wave speed in the first medium
(containing the incident wave) then we will see that there is critical angle, sin}(c,/c,),
which controls the behavior of the transmitted wave. For incident angles less than the
critical angle the expression for the cosine of the transmitted angle (which involves a
square root) is real so that we just see an ordinary plane wave expression for the
transmitted wave. However, if the incident angle exceeds the critical angle then the cosine
of the transmitted wave becomes imaginary. Depending on whether the frequency is
positive or negative, we must change the sign on this cosine term so that the pressure
never grows exponentially large in the y-coordinate, which would give an unphysical
behavior. Thus, in this case we get a wave traveling parallel to the interface with an
exponentially decreasing amplitude away from the boundary. This is called an
inhomogeneous wave.

For there to be a critical angle the second medium must be the faster medium since there
is no critical angle where sin'}(c,/c,) is real if the second medium is slower than the first.



Relationship between amplitudes and intensities

Intensity, /, = time average power flux in the wave

Fluid:
_P* _pcV?  P... pressure amplitude
2pc 2 V ... velocity amplitude
Solid:
>  pc,V’ .
P-wave J[=—m I"pn T,, ... normal stress amplitude
2pc, 2 T, ... shear stress amplitude
T e V?
S-wave [= 2¢ = % V., .. normal velocity amplitude
PEs V, ... tangential velocity amplitude

In some cases we want to know the energy being carried in a harmonic wave. We can
represent such energy through an intensity, |, which defines a time average power flux in
the wave. Shown are expressions for the intensities of a plane wave travelling in a fluid or a
solid in terms of the underlying amplitudes of pressure, velocity, or stress.



Stokes' Relations

T
'1 21 0
P16
IDZ’ (22 %‘ le pZ) CZ ?@\
| reversed path

_ pc cosd,

Fluid-fluid 7}, = .
P,C, €0S 0, @

In a pulse-echo inspection the same transducer is used as both a transmitter and receiver
of ultrasound. In that case the waves that are scattered from a flaw back to the transducer
follow a completely reversed path from the incident waves. and there can be transmission
coefficients involved in both directions. One can show that in the case of two fluids these
transmission coefficients are related through the Stokes relations given above.
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Stokes' Relations
PP PSSV P
T, . T, |

plﬂcp] pIDCpl

pZ’cpZ’csZ

TP;P pz s cpz ’ Cs2
12

Y
SV ;P
T
12
reversed paths

PiC, €080, by

12
PsC,, c08 0,

PSSV _ plcpl COsS 052 SV;P
Iy"w =———1
p2cs2 COsS epl

P;P
Fluid-solid 15, =

If we consider a fluid-solid interface, since there can be both P-waves and S-waves in the
solid we have the two Stokes relations given above. Note that we are taking the incident
wave to be propagating in a vertical plane here. In this case we can show that the S-wave
will have its polarization also in that plane and we will call it an SV-wave.



Transmission Coefficients (Fluid-Solid interface)
based on velocity ratios

ﬂuld /Olacpl

solid p2 b cp2 b Cs2

SV ;P
s T
. 2
e 2co0s0,, [1—2(s1n¢9s2) J
2 - 2
PrCpo [ . . . 2
cosd,, + cosd, | 4| =2 | sin@,, cosf,,sinb,, cosd,, +1-4(sind,, cosd,, )
PiCp P2
7P _ —4cosf,, cosb,,sind,,
12 -

2
C
cosf,, + P2 oo 0, {4[ Cs2 J sing,, cosd,,sind,, cos@,, +1-4(sinb,, cosb,, )21

PiCp Cpa

We can solve for the plane wave reflection and transmission coefficients at a fluid-solid
interface in the same manner as done for the fluid-fluid interface but with more algebra. In
an immersion inspection the waves are generated in a fluid, so we are primarily interested
in the transmission coefficients into the solid component being inspected. Shown are those
transmission coefficients based on velocity ratios.



>> ang = linspace(0, 89.9, 200);

>>[R,T] = pressure_coeffs(1.0, 7.9, 1480, 5900, ang); Fluid-Fluid R, T coefficients
>> plotyy(ang, abs(R), ang, abs(T), @myplotl, @myplot2) .

~~ xlabel('angle, degrees) (magnitude) water-steel
>> ylabel('R]) pressure-based

1.1

il TSP
~~

R
=

Tl

— critical angle

0.9
0

10 20 30 40 50 60 70 80 98
angle, degrees

Here are some MATLAB results showing the refection and transmission coefficients
obtained for a fluid-fluid interface where the first medium was water and the second fluid

P-wave speed was taken to be the same as the compressional wave speed of steel. One can
see a critical angle here at about 15 degrees.
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>> plot(ang, unwrap(angle(R)), ang, unwrap(angle(T)), '--") Fluid-Fluid R’ T coefficients

>> xlabel('angle, degrees') (phase) water-steel
>> ylabel('phase of R, T') p ressure-based
0

o
o

phase of R, T
[6)]

0 10 20 30 40 50 60 70 80 90

angle, degrees

Here is the same fluid-fluid model results for the phase of the reflection and transmission

coefficients. Note that below the critical angle the coefficients are real so the phase angles
are zero.



Fluid-Fluid R, T coefficients
>> [R,T] = velocity_coeffs(1.0, 7.9, 1480, 5900, ang); itud t teel
>> plotyy(ang, abs(R), ang, abs(T), @myplot1, @myplot2) (magnitude) water-stee
>> xlabel('angle, degrees') Velocity—based
1.01 0.08
R is same as . 0.07
for pressure, 0.99 T 008
Tis muCh_ 0.98 & |T| \\“ 0.05
smaller & \ =
0.97 + |R| \‘ 0.04 —
1
0.96 - “l 0.03
1
0.95+ ‘l‘* 0.02
1
0.94 ¢ '{ 0.01
1|
0.93 . : ‘ ‘ : ‘ : ‘
0 10 20 30 40 50 60 70 80

o
angle, degrees

If we use reflection and transmission coefficients based on velocity ratios, then the
reflection coefficient stays the same but the transmission coefficient is much smaller.
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>> [R,T] = velocity_coeffs(1, 7.9, 1480, 5900, ang); Fluid-Fluid R, T coefficients
(phase) water-steel
velocity-based

>> plot(ang, unwrap(angle(R)), ang, unwrap(angle(T)), '--')
>> xlabel('angle, degrees')

0
-0.5
phases are same
as for pressure 1}

-1.5

0 10 20 30 40 50 60 70 80 90

angle, degrees

The phases for the velocity ratios are the same as for the pressure ratios.
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Fluid-Solid Tpp coefficient
(magnitude) water-steel
velocity-based with ¢, =0

>> [tpp,tss] = trans2(ang,1.0, 7.9,1480,5900,0);
>> plot(ang, abs(tpp))
>> xlabel('angle, degrees')

>> ylabel(" [tppl)

0.07
____f/
0.06
Vreﬂt
0.051
|7
pal Virans 0.04
Vine £0.03
027
same as for
fluid-fluid  0.01
model 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 70 80 90

angle, degrees

Here is the transmission coefficient for P-waves using the full solid model for a water-steel
interface but where we set the shear wave speed of the solid to be zero. In this case, we do
recover the fluid-fluid result

17



>> plot(ang, unwrap(angle(tpp)))

Fluid-Solid Tpp coefficient
(phase) water-steel
velocity-based with ¢, =0

>> xlabel('angle, degrees')

>> ylabel('phase of tpp, radians')

0
n-0.2F
c
8
same as for 5 .04
fluid-fluid
a -0.6
model z
o-08"
(2]
2
S -1
-1.27
1.4
-1.6

0 10 20 30 40 50 60 70 80 90

angle, degrees

The phase is also the same for the fluid-solid and fluid-fluid models in this water-steel case.

18



>> [tpp, tps] = trans2(ang, 1.0, 7.9, 1480, 5900, 3200); . .
Fluid-Solid tpp ,tps

coeffs (mag) water-steel

Second critical Velocity—based
angle l

>> plot(ang, abs(tpp), ang, abs(tps), '--")

>> xlabel('angle, degrees')

3.5
25¢ i

1.5 First critical
angle

1
0.5/ j

0 oo ‘ ; ‘ ‘
0 10 20 30 40 50 60 70 80 90

_______
i

angle, degrees

Here now are the actual fluid-solid results for both transmitted P-waves and S-waves,
showing the magnitude of the transmission coefficients based on velocity ratios. We see
that there are two angles where the behavior changes. These are critical angles which we
will describe shortly.



>> ang =linspace(0, 27, 200);
>> [tpp, tps] = trans2(ang, 1.0, 7.9, 1480, 5900, 3200);
>> plot(ang, abs(tpp), ang, abs(tps)."-)

>> xlabel('angle, degrees")

Fluid-Solid tpp ,tps
coeffs (mag) water-steel
velocity-based (below
second critical angle)

0.18
0.167
0.141
0.121

0.1r
0.087
0.067
0.041
0.02

0 5 10 15 20 25 30
angle, degrees

This is an expanded view of the transmission coefficients below the second critical angle.
We see that the P-P coefficient is nearly a constant up to near the first critical angle while
P-S coefficient has a linearly increasing behavior.



>> plot(ang, unwrap(angle(tpp)), ang, unwrap(angle(tps)),--') Fluid-Solid tpp ,tpS
>> xlabel('angle, degrees’) coeffs (phase) water-steel

assumed polarizations: velocity-based

N A4 5 | |
t
ps
/ ‘ )(v ol \ ?\\ _//’ |
1 \\\ -—“/
3 frmmTTTm s P TR ]

phase on t, 21 1
initially is &t top

since velocity comp. H \ |
of transmitted 0 1

S normal to the
interface is

-, -2

0 5 10 15 20 25 30

so polarization is \
angle, degrees

Here are the phases of the transmitted waves. Below the first critical angle the phase of the
P-to-P coefficient is zero but the P-S coefficient has a phase of pi. This occurs because the
actual polarization of the transmitted wave is opposite to that of the assumed polarization
and recall exp(i i) =-1 so this phase of 1 just means the amplitude of motion in the wave is
in a direction opposite to that we assumed.



Fluid-fluid R, T coefficients, pressure-based

function [R,T] =pressure_coeffs(dl, d2, cl, c2, ang)

iang = (ang.*pi)./180;

sint =(c2/c1)*sin(iang);

cost = sqrt(1-sint.*2).*(sint <= 1) + i.*sqrt(sint."2 -1).*(sint > 1);
R = ((c2*d2).*cos(iang) - (c1*d1).*cost)./ ...

((c2*d2).*cos(iang) + (c1*d1).*cost);

T = ((2*d2*c2).*cos(iang))./((c2*d2).*cos(iang) + (c1*d1).*cost);

Fluid-fluid R, T coefficients, velocity-based

function [R,T] =velocity coeffs(dl, d2, cl, c2, ang)
iang = (ang.*pi)./180;

sint =(c2/c1)*sin(iang);

cost = sqrt(1-sint.*2).*(sint <= 1) + i.*sqrt(sint."2 -
1).*(sint > 1);

R = ((c2*d2).*cos(iang) - (c1*d1).*cost)./ ...
((c2*d2).*cos(iang) + (c1*d1).*cost);

T =((2*d1*cl).*cos(iang))./((c2*d2).*cos(iang) +
(cl1*d1).*cost);

Here are the MATLAB functions for the fluid-fluid models we have discussed.
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Fluid-Solid P-P, P-S transmission coefficients

function [tpp,tps] = trans2(inc, d1, d2, cpl, cp2, cs2)

iang = (inc.*pi)./180;

sinp = (cp2/cpl)*sin(iang);

sins =(cs2/cpl)*sin(iang);

cosp= (i*sqrt(sinp.”2 - 1)).*(sinp >= 1) + (sqrt(1 - sinp.”2)).*(sinp < 1);

coss = (i*sqrt(sins.”2 - 1)).*(sins >= 1) + (sqrt(1 - sins.*2)).*(sins < 1);

denom = cosp + (d2/d1)*(cp2/cpl)*sqrt(1-sin(iang).2).*(4.*((cs2/cp2)"2).*(sins.*coss.*sinp.*cosp) ...
+ 1 - 4.%(sins."2).*(coss."2));

tpp = (2*sqrt(1 - sin(iang)."2).*(1 - 2*(sins.*2)))./denom;

tps = -(4*cosp. *sins.*sqrt(1 - sin(iang).”2))./denom;

Here is the MATLAB function for the fluid-solid model transmission coefficients.
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Wave Propagation Fundamentals -3
Ultrasonic Attenuation

Waves propagating in real material will experience attenuation due to a number of
sources. Our discussion of wave propagation so far has ignored attenuation so we will
now look at some methods for including this attenuation in our models.



Learning Objectives

Attenuation definitions
Simple method for measuring average attenuation

Model-based approach for determining attenuation
as a function of frequency

We will give a very simple method for obtaining an average attenuation value for a
material and describe a more detailed approach that will allow us to include a
frequency dependent attenuation in wave propagation and wave scattering
calculations.



Ultrasonic Attenuation

plane wave amplitudes:

A, A,

attenuating
medium

=exp[—a(f)d}

I

attenuation (Np/unit length)

ENIES

Attenuation in real materials is a complex process. Attenuation may be due, for
example, as a result of the scattering of waves from the small grains that exist in a
material, thus reducing the amplitude of a propagating wave. In our models of wave
propagation we will not try to describe those attenuation processes in detail. Instead,
we will use a simple plane wave model where will assume that the attenuation
effects can be included by multiplying the wave amplitudes obtained for an ideal (on-
attenuating) medium by an exponential decaying factor containing a frequency
dependent attenuation coefficient and the distance of propagation. The attenuation
coefficient is measured in Nepers/unit length where a Neper (Np) is a non-
dimensional quantity.



John Napier of Merchistoun (1550 — 4
April 1617), nicknamed Marvellous
Merchistoun, was a Scottish
mathematician, physicist,
astronomer/astrologer and 8th Laird of
Merchistoun. He is most remembered as
the inventor of logarithms and Napier's
bones, and for popularizing the use of
the decimal point. Napier's birth place,
Merchiston Tower, Edinburgh, Scotland,
is now part of Napier University. He is
buried in St Cuthbert's Church,
Edinburgh

Here is a short description of Napier. The Neper unit is derived from his name.



Example: water
a,(f)=253x10""f* Np/m f...Hz

Attenuation is affected by many variables so that
generally it is not possible to give generic values
that are useful for quantitative analyses.

Thus, attenuation generally must be obtained
experimentally for the material in question

When attenuation values are quoted they are often
given as average values in decibels/unit length

Qs =8.080Q,,

We can easily measure the attenuation coefficient in water as a function of
frequency. The result is shown above, where we see that the attenuation increases
like the square of the frequency. Here the attenuation coefficient is given in
Nepers/meter and the frequency, f, is measured in Hertz (Hz). For other materials it is
not possible to give similar generic results since the attenuation is controlled by many
aspects of how the material is manufactured and it is usually necessary to measure
the attenuation on a sample of the material being used. Attenuation values are also
often quoted in terms of decibels/ unit length but the conversion from Nepers/unit
length to decibels/unit length is simple, as shown (see the next slide for how this
conversion is obtained).



in an attenuative
medium:

plane wave AT Ay

pulse traveling N\
| |
[ d |

average attenuation (Np/l)

'

% = exp[—&Np/, d]

average attenuation (dB/I)

A
l 20log [2J
10 Al

Ty =—
dB/1
d

:(2010&0 e)&Np/,
~8.686a,,,

One can measure the amplitude changes of a waveform over a distance and
determine an average attenuation for the material. This attenuation can also be
expressed in either Nepers/unit length or dB/unit length. We need a more detailed
measure of the attenuation as a function of frequency to include in our ultrasonic
models but a measurement of the average attenuation can give us a rough indication
of the importance of attenuation in a material.



Simple method to determine average attenuation

To model the effects of attenuation on the characteristics of a signal, we must be
able to find the attenuation of a material as a function of frequency. However, in
some applications we may be content to obtain an average attenuation value
which describes the overall behavior of the amplitude of the signal. We can
obtain such the average attenuation of a solid sample, for example, by using the
pulse-echo setup shown.

o

On the oscilloscope screen we will see a series of evenly spaced pulses
that are decreasing in amplitude. These are the waves that have been
reflected from the back surface of the block one or more times.

If all we are interested in is the effects of attenuation on the signal amplitude, we can
use a very simple pulse-echo measurement to obtain the average attenuation. We
place a transducer on a block of the material and examine the waves that are
reflected one or more times from the back surface.



Here is an example
A-scan we might see:

Let the measured amplitudes of these signals be A, A,, ... etc. as shown

If the back surface of the block is in the far-field of the transducer, the incident
and reflected waves will behave like attenuated spherical waves so we could
express the voltage of these signals, v(t), in the form:

g(t-2D/c _ g(t—4D/c _
( ):%exp«ZaW,D)+%exp(74a‘vp“D)
g(t-6D/c) _
+Texp(76al\,p,,D)+

where the waveform shape is given by the g(t) function and 07W, is the
average attenuation of the block (in Np/l)

Here is an example response we might see. If the back surface of the block is
sufficiently far from the transducer (i.e. in the “far field” of the transducer, which we
define later) the reflected waves will look attenuated spherical waves so we can write
the time domain response as shown.



If we let g, be the maximum amplitude of the g function then the amplitudes shown
are given by

etc.

If we take the ratio of the first two reflections we have

% =2exp(2a,,,D) ™

If we let g, be the maximum of the g function then the amplitudes of these signal

can all be written as shown. The ratio of the first two reflection amplitudes is then
given by Eqg. (1)



Now
20log,, [%J =20log,, (2)+20log,, | exp(2a,,,D)|

=6dB+(2D)20log,, (e)&y\,p/,
=6dB+(2D)a,,,

which gives y
20log,, (‘j —6dB
AZ

2D

Qi =

Assuming we measure this ratio we then can directly obtain an expression for the
average attenuation. Note that because of the spherical wave spreading there is
always a 6 dB decrease in the signal amplitude so that any material attenuation is
seen in any changes greater than that 6 dB amount.



Measurement of attenuation as a function
of frequency

A A A A AL

pl > cpl
V,
0 P> CPZ’ €2 material

\ ......................................... o to be measured
Pa— «

voltages received
from front, back \ \ \
surface reflections D1 D2

Vi(@)=s(@)t] ()

V,,(0)=s(w)t} (o)
T acoustic/elastic transfer functions that

describe the waves received from the
front and back surface reflections

system function T

Now, consider how we might find a more detailed measurement of the attenuation
as a function of frequency. We will again use a pulse-echo setup where we place
both a transducer and a block of material (whose attenuation we want to measure) in
a fluid and measure the front and back signals from the block [ Note: here we are
only considering waves that have been reflected once from the front or back
surfaces.]. We have seen previously that in the frequency domain, these reflected
signals can be written as the product of a system function and an acoustic/elastic
transfer function that describes the waves present in this setup.
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front surface transfer function

tH(w)=1} (a))exp[—Zaw(a))DJ o]

ideal transfer = f A 2 .
function model t/f (a)):DP (kpla /2D])R12 exp(ZZkPID])

plane wave reflection coefficient

back surface transfer function

tﬁs (a)) = [:»‘ (a))exp [72aw (a))D1 - 2(1’)2 (a))DJ | ———

ideal transfer
function model

it (0)=D,(k,a* /2D)T,,R,T,, exp(2ik,,D, +2ik,,D, )
plane wave reflection, transmission coefficients
(normal incidence)

For ideal (non-attenuating) media we can actually model these acoustic/elastic
transfer functions (see the next side) and then multiply them by the corresponding
attenuation terms for both the water (whose attenuation is known) and the solid.
Note that these models contain plane wave reflection and transmission coefficients
at normal incidence.



D, (u)= 2[1 —exp(iu){.]o (u)—iJ, (u)}}

diffraction coefficient

In the back surface signal, the distance D appearing
in the diffraction correction is:

— C
D=D,+-22D,

pl

The acoustic/elastic transfer functions also contain diffraction coefficient functions
that are in terms of Bessel functions J, and J;.
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Vo (@) |77 (o)
= 2 D.
AT RAT RS
T T usually fit the attenuation to a simple polynomial

function of frequency over the bandwidth of the system
measure model

0.0090 V(a)) tNAﬁ(a))‘
exp| 2a, (@)D, | == e
| (L1 (o) o
0.0060 —
4
] Here is an example of such a fitting
0.0030 | transducer |

bandwidth

- best fit linear approximation

0.000 1 | 1 | 1 |
0.0 6.0 120 18.0
Frequency (MHz)

If we measure the ratio of the magnitude of these front and back surface response,
we know from our models the ratio of the acoustic/elastic transfer functions, so we
can write an expression for the frequency dependent attenuation we seek. Normally,
we obtain this attenuation by fitting it to a simple polynomial function of frequency.



Homework problems

D.1,8.2

Homework problem from Appendix D and a special problem.
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Remarks:

To measure attenuation, it is not necessary to measure
the system function (it cancels out).

S-wave attenuation measurements must be done in

a different setup.

This approach is ad-hoc. Actual mechanisms of
attenuation are rather complex.

For high attenuation, wave speed as well as amplitude
is affected (material dispersion).

Setup shown is for measurement of P-wave attenuation.

Here are some remarks on the method, which are self-explanatory.
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Waves Used in NDE

The waves we have been describing so far are bulk waves. There are a number of other
types of waves used in NDE testing which we will also describe here.



Learning Objectives

Bulk Compressional, Shear Waves
Rayleigh (surface) waves
Lamb (plate) waves

We will examine some ways that bulk waves are used in NDE and consider briefly some
other types of waves such as surface waves and plate waves.



P-wave transducer

/

+h

fluid couplant

Compressional and Shear Wave Contact Transducers

S-wave transducer

"solid" couplant

v

s

l

There are two types of contact transducers. In a P-wave transducer the transducer crystal
experiences an expansion and contraction type of motion and transmits a corresponding P-
wave with similar motions into the underlying elastic solid. To maintain good coupling to
the material a thin fluid couplant layer is normally used. In contrast, an S-wave transducer
crystal experiences shearing motions which are transmitted as an S-wave. In this case we
must have a semi-permanent type of coupling such as glue between the transducer and the
part to transmit this shearing motion. Thus, unlike a P-wave transducer, we cannot move

the transducer around on the surface.




Mode Conversion
ACNAANAAN_AL
fluid incident reflected
0 ul P-wave\ g 0p1 P-wave
1, cpl » f
Vine Veeflt
—
X
v,
solid trans ‘
P2, cp2 | cs2 s transmmg)i
¥ 652 Virans P-wave (
y transmitted
S-wave (V)
Generalized sing,, _sm 0, _sind,
Snell's law: Cpi Ch o

When waves are incident at an oblique angle to an interface one generates both
compressional and shear waves whose angles are both controlled by Snell’s law. Here we

see an example of such plane waves in an immersion setup



Critical Angles

€,2:C :?A P €p2:C \ ‘ Cp2sCsa \
S

S inhomogeneous inhomogeneous
P-wave P, S waves
M @ 3
(¢, (c,)) ¢
| 1 .- .- C
6, <sin L—”—J sin IL—LIJ <6, <sin l(ﬂj 0, >gin~H &L
cp2 Cp2 Cs2 L Cs2
. 4| C 1 . 1 C
(0, =sin” <2 (0, =2
@ Cs2
first critical angle second critical angle

In oblique incidence problems involving elastic solids there are two critical angles present.
For a fluid-solid interface case shown we first see the case (1) of the transmitted waves
when we are below the first critical angle. In this case both P- and S-waves are transmitted
into the solid. However, above the first critical angle the transmitted P-wave becomes an
inhomogeneous wave (see (2)) that propagates along the interface and decays
exponentially away from that interface, leaving only a transmitted S-wave to propagate in
the solid. Above a second critical angle (case (3)) both the P- and S-waves become
homogeneous waves traveling along the interface, and no transmitted wave exists in the
solid. To have the first critical angle exist we must have c, <c,, and for the second critical
angle to exist we must have c;,<c,



Angle Beam Shear Wave Transducer

P-wave crystal and backing  plastic wedge

reflected
P- and S-waves
(suppressed)

R&\&\SV—Wave

]

N2 |

weld inspections

We can use critical angle phenomena to generate an angle beam shear wave transducer
where we place a P-wave crystal at an angle on a low speed wedge made of a material such
as Lucite. This crystal generates primarily a P-wave in wedge which is transmitted as only an
SV-wave into the underlying part if the angle is above the first critical angle but below the
second critical angle. Again, a thin fluid couplant is used between the transducer and the
part. Such angle beam shear wave transducers are commonly used for weld inspections
where by moving the transducer back and forth on the surface we can scan different
portions of the weld.



Rayleigh (Surface)Wave Transducer

angle chosen such that

c

. 1

sin@ | =%
P

Cr2

/ stress-free surface

Bﬁ‘ Rayleigh wave

If we use an angle beam transducer setup but choose the incident angle so that it is slightly
above the second critical angle, then we can generate a combination of inhomogeneous P-
and S-waves that produce a Rayleigh wave which can travel for long distances along a
stress-free surface. The Rayleigh wave speed (which we discuss shortly) is slightly smaller
than the shear wave speed.



In the late 1800's Lord Rayleigh looked for a wave
confined near the stress-free surface of an elastic solid

of the form:
¢ = Aexp[-ay]exp[ik(x —ct)]
w = Bexp[—fy Jexp|ik(x —ct)]

XY'_.

L

To see how Rayleigh waves arise, consider a combination of inhomogeneous P- and SV-
waves traveling along a stress-free surface. Rayleigh took potentials of the form shown
above, having a wave speed, c, which at first is unspecified.



By satisfying the equations of motion

and the stress-free boundary

conditions 7, =7, = 0 ony=0

Rayleigh found that the wave speed, ¢, must satisfy

2-c* /) - l—cz/cz\/l—cz/cSz:O (1)
P

Cp,Cg  compressional and shear wave speeds

By satisfying both the equations of motion and the stress-free boundary conditions,
Rayleigh found that wave speed, ¢, must satisfy the Rayleigh wave speed equation (1).



Rayleigh's equation

2—cz/cs2 - l—cz/czw/l—cz/cs2 =0
P

There is always one real root of this equation, ¢ = cp

where €r <¢; A good approximation of this root is:

0.862 +1.14v v... Poisson's ratio
CGpE——¢
1+ v

)

The Rayleigh wave travels about 90% of the shear wave speed

Rayleigh’s equation always has a solution c =c; which is slightly smaller than the shear
wave speed. The simple approximate expression shown above can often be used to obtain
the Rayleigh wave speed.

Rayleigh waves are very useful for applications such as inspecting the surface of parts for
surface-breaking cracks since they are very sensitive to such flaws. Rayleigh waves can
travel for long distances because, unlike bulk waves, they only spread out on the surface
rather than spreading out through the entire volume of the part. They are, however,
sensitive to surface conditions such as roughness.
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displacement

or velocity stresses
«l—»ux . i;cyy
u " . A ke
) y \ 4—1_ TXy
Tyy slxy

The depth of penetration is a function of the frequency

Here are some plots of the displacements and stresses in a Rayleigh wave. The exact depth
of penertration of the Rayleigh wave is a function of the frequency.



V, velocity profile versus distance and depth in the plane z=0

X (mm)
20 200 400

0.0'

y (mm) 0.5

1.0

5 MHz, 6 mm radius transducer on a Lucite wedge radiating into aluminum

This, and the next three slides, will show some simulated wavefields generated by a
Rayleigh wave transducer. Here, we see the vertical velocity profile in a vertical plane where
red is high amplitude and blue is low amplitude



V, velocity profile versus distance and depth in the plane z=0

X (mm)
20 200 400

e —

5 MHz, 6 mm radius transducer on a Lucite wedge radiating into aluminum

Here is the corresponding amplitude in the x-direction

13



2-D profile of the V, velocity component at the surface

decay of Rayleigh wave ~ 1
X

i X, mm

5 MHz, 6 mm radius transducer on a Lucite wedge radiating into aluminum

This is a plot of the x-velocity on the stress-free surface. At some distance from the
transducer we see that the velocity profile is decreasing in amplitude like one over the

square root of the distance, which is smaller than a spherical wave spreading which would
be like 1/x.



V, velocity component beam profile at the surface
in the plane of the interface

-20

20 200 400

5 MHz, 6 mm radius transducer on a Lucite wedge radiating into aluminum

Here we are looking directly down on the free surface at the x-velocity wavefield, showing
the beam generated from the Rayleigh wave transducer.
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Lamb (Plate) Waves

o =2zt ... frequency
¢= c(a)) | (rad/sec)

AVAVA

T2h

If one looks for solutions of the form

¢ = f(v)explik(x —c1)]
v = g(v)explik(x —c1)]

If we place an angle beam transducer on a thin plate, we will generate a complex set of
multiply reflected P- and SV-waves. These can merge to form a wave, called a Lamb or plate
wave, that travels in the thin plate with a frequency dependent wave speed. We can thus
try to find solutions for such a wave in the plate which travels with a wave speed, c, and has

some variations across the thickness of the plate.
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then solutions of the following two types are found:

extensional waves

f = Acosh(ay)
g = Bsinh(fy)

(a)

flexural waves

f =A’sinh(ay)
g =B’ cosh(fy)

If we satisfy both the wave equations and the stress-free conditions on the surface of the
plate we will find that we can have two types of plate wave disturbances called extensional
waves and flexural (bending) wave where the functions f and g have the forms shown.
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satisfying the boundary conditions 7,, =7, = 0
on ¥==%h gives the Rayleigh-Lamb equations:

tanh(Sh) _ 40’ap + ... extensional waves
tanh(ch) | 2 (wz /e + ,32)2 - ... flexural waves

w 02 (4] 02
a=— -7 ,B=—Kl-73
c ¢, c c;

There are multiple solutions of these equations. For each
solution the wave speed, c, is a different function of
frequency. Each of these different solutions is called a "mode"
of the plate.

The boundary conditions in particular give us the Rayleigh-Lamb equations for the wave
speed, c, of the extensional and flexural waves. These equations have multiple solutions
where each solution has a different dependency on the frequency. Each of these solutions
is called a mode of the plate.



consider the extensional waves

tanh[Z;rﬂle/cz—l/Cf J 4\/1—c2/cf\/1—c2/cf,

tanh| 27 1/~ 1/c] | (2-c¢ /ety

2
Ifwelet kh= 27h >>1  (high frequency)
c

then both tanh functions are =~ |

and we find (2—c2 /cf)Z = 4—\/1—02 /cf\/l—c2 /ci
so we just have Rayleigh waves on both stress-free surfaces:

=
=

If we examine the Rayleigh-Lamb equation for the extensional waves at high frequencies
we find the same equation as for Rayleigh waves. In this limit the extensional waves are just
Rayleigh waves propagating on both surfaces.



In contrast for kh <<1 (low frequency)
tanh(ah)= oh

tanh(Bh) = S

we find

and the Rayleigh-Lamb equation reduces to

(2—02/03)2 =4(1—cz/c}2,)

which can be solved for ¢ to give

’ E
c= Cplate = /)(Tvz)

At low frequencies, the wave speed of extensional waves become a constant equal to the
wave speed for P-waves in a plate.
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Extensional Waves

C

phase 2
velocity "

(ms)
/“v I

2L

c= cplate

frequency-thickness (MHz-mm)

Here we show the behavior of the first ten extensional modes in the plate as a function of
frequency. Obviously there can be considerable complexity in these results but we will not
discuss the details further here as our focus will be primarily on bulk waves.



Flexural Waves

181
16+
C 141
phase .|
velocity 1w}
(m/s) e
o
Al
2f
‘1 ‘2 3 4 5 é 7 8 9 10
fundamental
flexural frequency-thickness (MHz-mm)
mode

Here are the corresponding flexural plate mode curves. At low frequencies we see a much
different behavior from that of extensional waves.
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Homework problems

S.3,54,85

Special homework problems.
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Acoustic/Elastic Transfer Function

The acoustic/elastic transfer function describes the waves propagating in the fluid and solid
media present in an NDE test. This is not a function we can measure so we need to be able
to model the function.



Learning Objectives
Modeling the acoustic/elastic wave processes as
a transfer function
Blocked force concept

Special cases where the transfer function can be obtained
analytically

Effects of material attenuation

Here, we will define the acoustic/elastic transfer function and discuss the concept of the
blocked force. We will examine some cases where one can actually determine the
acoustic/elastic transfer function analytically and show such an example where attenuation
is also included.



Acoustic/Elastic Transfer Function

o BN

All the complex wave propagation and scattering processes occurring
in an ultrasonic measurement system can be characterized in terms of
an acoustic/elastic transfer function

transmitted F, F, received

t

force —| (o) — "blocked" force

The acoustic/elastic transfer function is defined as the ratio of forces at the receiving and
sending transducers. The force at the sending transducer is just the driving compressive
force on the face of that transducer but at the receiver the force used is the blocked force.
We will examine those forces in a pitch-catch immersion setup but we can consider a
contact testing pitch-catch setup in a similar manner.



The Blocked Force on Reception

On reception the receiving transducer face moves and
scattered waves are also generated

pscatt Z(\
pincﬁ>§v

To see what the blocked force is consider a receiving transducer. Waves that are incident on
that transducer will generate additional scattered waves.



The Blocked Force on Reception

If the incident waves are treated locally like plane waves
and diffraction effects are ignored, we can consider the
interactions of the incident waves with the transducer face
as those of plane wave with an infinite planar interface.
Now, consider the case where the interface is held rigidly
fixed:

AA A ALY

reflected ‘><
wave .

0.
>< \ rigid

bounda
incident i

wave

Although the incident and scattered waves are likely not planar, we will treat the
interaction of the waves with the receiving transducer as plane waves. Consider the case
when the face of the transducer is modeled as a rigidly fixed surface.



The Blocked Force on Reception

Aenrar by

reflected

0.
X
rigid

incident boundary
wave

In this case it can be shown that at the interface the
blocked force is just double the force due to the incident
wave only as if the transducer were absent, i.e

F,(w)=2F, (w) Wwhere F,.= J [ p.ds

We will show that in this case the blocked force is just double that of the incident wave so
we can compute the blocked force in this case only from the incident waves as if the
transducer was absent.



The Blocked Force on Reception

proof for normally incident waves

X
Equati . Op_ . _
quation of motion: 6_ =—l0pV, P=Dy T Prepi
X

fromv, =0atx=0 kP —-ikP.=0

or EB=F (reflected pressure = inc. pressure)

Thus, alsoatx=0 F=F, +F,,=FS+FS=2F

mc mc

We have looked at plane wave interactions with an interface but now let us again examine
the case where a plane wave is normally incident on a rigid ( motionless) surface. Placing
harmonic waves into Newton’s law and using the boundary condition of no normal
displacement, one finds the pressure amplitude of the reflected wave is just equal to that
of the incident wave so that the total pressure is just double the incident pressure. The
total force on the area of the receiving transducer face, therefore, will be just twice the
incident force and this force is called the blocked force. Thus, in an ultrasonic setup if we
can model the incident waves present at the receiving transducer coming from the sending
transducer we can just double that force and use that result to calculate the
acoustic/elastic transfer function.



Acoustic/elastic processes model

For a number of calibration setups the acoustic/elastic
transfer function can be obtained explicitly:

ANAANAN ANAAAN

S B2 S R

front surface reflection back surface reflection

AAANANL
ANAANAN

o IR

reflection from flat-bottom hole reflection from flat cylinder

In a number of setups we can model explicitly the acoustic/elastic transfer function. The
ones shown here are all for pulse-echo setups.



Acoustic Transfer Function

Example: the acoustic/elastic transfer function of two aligned
circular piston transducers of different radii can be found.

S SR

o

t,(0)= %{@exp(ile) ~16a’b’

/2

sin® ucos’ u

exp[ il’cl\/D2 +(a —b)2 +4abcos’ u }du

-

. o (a —b)2 +4abcos’u

We can also obtain the acoustic/elastic transfer function in this pitch/catch setup where
two circular transducers are aligned along their central axes in a water bath. The explicit
function is shown here in terms of an integral.



Acoustic Transfer Function

Special Cases
. 4
t,(w)= Z{exp(zle) -—
7T
/2
. I sin” u exp [ikl VD’ +4a’ cos’ u}du}
0

At the high frequencies found for most NDE transducers
the above integral can be evaluated approximately to yield:

t,(w)=2 exp(z’kD)[l - exp(ika2 /D)

{Jy(ka* 1 D) -iJ, (ka? /D)}}

Here we show the special case where the two transducers are of the same size. In this case,
at the high frequencies found in most ultrasonic NDE transducers the integral can be
approximated in terms of Bessel functions to yield an explicit expression for the
acoustic/elastic transfer function.
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Acoustic Transfer Function

Other special cases:

a>>b: t, (co)=22—i{exp[ikD]—exp[ik\/D27+a2J}
a<<b: Iy (0)22{exp[ikD]—exp[ikm}}

, exp(ik,D)

D>>ab: Li(@)=—ika D

Here are also some special cases where we can obtain analytical expressions for the
transfer function.



Acoustic Transfer Function

Attenuation of ultrasound in the fluid can be added
to this model:

t,(w)>1,(w)exp|-a(w)D]
o(w) ... attenuation coefficient D ... distance traveled

Forwater o =25.3x10"°f%  1/mm

f... frequency in MHz

All the results we have shown for the acoustic/elastic transfer functions were for an ideal
(i.e. non-attenuating) fluid media. However, as we showed previously we can easily include
an attenuation factor to account for losses, and for water, in particular, we can describe the
attenuation coefficient.
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Acoustic Transfer Function

Example acoustic transfer function (including fluid
attenuation effects)

&
0.39 45
50
0.3 / |
AAANAAAA .33:: oo amplitude -55 &
E 1% 2
= ] e
g 02 6 2
2a ‘FD;H j < 1-70 E
2 0.15 / ~
1-75
0.1 phase | a0
D =444 mm 0.05 85
a=3.175 mm 0 ‘ ‘ ‘ 0
0 5 10 15 20
Frequency (MHz)

Here is an example calculation for the acoustic/elastic transfer functions for a pair of NDE
immersion transducers where attenuation of the water is included in the calculations.



Acoustic Transfer Function

Goldstein, A., Gandhi, D.R., and W.D. O’Brien,” Diffraction
effects in hydrophone measurements,” IEEE Trans. Ultrasonics,
Ferroelectrics, and Freq. Control, 45, 972-979, 1998.

Here is a reference on some of the issues discussed here. There are many others as well.
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The Ultrasound Reception Process

Here, we will describe all the elements of the reception process where the acoustic/elastic
waves are transformed into a measured output voltage.



Learning Objectives
Blocked force as a "lumped" source on reception
Thevenin equivalent transducer/sources on reception
Measurement of receiving cabling properties

Characterization of receiver as impedance, gain
and measurement of these receiver parameters

Reception transfer function

Ultrasonic system model

We will examine why the blocked force is important in the reception process and examine
how this force acts as part of a Thevenin equivalent model of the receiving transducer and
its acoustic sources. Again, we will examine the cabling and discuss how to model the
receiver. All of these elements will then be combined into a complete model of the
reception process.



Transducer on reception

ANAANANA

incident waves)z
scattered waves Em
e

v 1

— —

receiving transducer

acoustic
B V
sources ? F L [T°] ‘

Note: . .
ote: assumed directions F ~ ng 7{? 14
of v,I are now reversed from =| 3 3

Ly Iy

. %
sound generation case so:

Like the sending transducer the receiving transducer can be modeled as a two port system
but where now the acoustic port is the driving input port and the electrical is the output.
Also note that the directions of the velocity and current are now changed from the sending
case. These changes means that the elements of the transfer matrix used to characterize
the transducer as a transmitter are in different locations in the transfer matrix when the
transducer is used as a receiver, as shown. To make this model useful we must describe
how the acoustic waves acting on the receiver can be defined in terms of a lumped source

parameter.



Transducer on reception

original problem = problem I

™) "
B
Pecart Aj</ F, force on po §</ Fy , blocked

transducer force

+ problem II
S

ﬁ@’“as orn e

Fg , force due to motion of
transducer face

= Fo)=Fyo)+ Fy(o)

Consider a problem where a set of waves are incident on a receiving transducer, producing
some scattered waves as well as some motion of the face of the transducer. We can
consider this problem as the superposition of problem I, where the face of the transducer
is held fixed, and problem Il where the incident waves are absent and the transducer has
the motion of the face of the original problem. The force on the transducer face for
problem I is the blocked force, Fg, while the force due to the motion of the face in problem
Il we will call F. Obviously the total force is the sum of these two forces.



Transducer on reception

problem II : transducer is acting as a transmitter

S v(o)
pscatt —
Vv (X,0)-n <-Ej:[] Fy(0)=2! (a))(—v(a)))
FS
) Fo)=Fe)-Z(oMe) )
Z () V. 1,

=) FB(OJ)O F‘ [T5] ‘V
L 1

In problem two the waves generated are due only to the motion of the transducer face so
this is identical to the case where the transducer is used as a transmitter except now the
direction of the velocity is different. Thus, a minus sign appear when we relate the force
and the velocity through the acoustic radiation impedance. The total force is then given by
Eqg. (1) and this relationship can be modeled as shown in the final figure where the blocked
force acts as a source term in series with the acoustic radiation impedance at the input
port. Thus, the blocked force is the natural force to calculate at the receiving transducer.



Transducer on reception

Note: many authors assume the incident and scattered
waves can be treated as plane waves incident on a fixed
planar surface. In this case, as we showed previously:

blem I
- X problem

B >< Fy =2 F,,. = twice the force due to the

Pscatt incident waves only
a
Z(0) Vv, 1,
— 2 Finc(m)ﬁ [T?] ‘ \
\— !

As we showed previously, if we model the incident and scattered waves at the receiver
locally as plane waves, then the blocked force is just twice the force in the incident waves

when the receiving transducer is absent so we can replace the blocked force by twice this
incident force in our model.



Transducer on reception

7o) I
Fy(@) ( ) F‘[ (T3] [V
L 1] ||

Thevenin equivalent
reduced transducer and acoustic sources model
I

We can replace the acoustic sources and transducer by a Thevenin equivalent system
consisting of only a voltage source and an electrical impedance.



Transducer on reception

reduced transducer and acoustic sources model

v

under open {F}_ 2 (v F(o)=T;(0)V" (o)
circuit conditions kol o =
but, recall  F(@)=F,(0)-Z" (o)v(o)
open-circuit voltage

V(o) 1 o o
© o) mepzr@ne =) V=V =S5 (0)F, (o)

We can show that the open circuit voltage is just the blocked force times the sensitivity
factor we discussed previously when the transducer is used as a transmitter.



Transducer on reception

reduced transducer and acoustic sources model

Z,B;a (w) N
Fy () ( ) FI [T"]
[
To get the impedance, remove the blocked force source and
«— [m
measure z¢ = Vu B 3
"7, z#@Q | e] | I

but this is the same configuration as during
sound generation s0  y¢ _ y5e
eq

in

We can get the Thevenin equivalent impedance by removing the blocked force source, but
this just yields the same configuration as when the transducer is being used as a
transmitter so the electrical impedance here is the same as the one calculated when the
transducer is being used as a transmitter.



Transducer on reception

reduced transducer and acoustic sources model

Thus, the final Thevenin equivalent circuit is as given, showing that the transducer
impedance and sensitivity characterize the transducer completely when used as both a
transmitter or receiver.



Receiving cable — transfer matrix model

Vv, L@q - @j v,
1

J 1

vl m | v

transmission line model

{Vl}{ cos(k.L,) —iZSsin(kclc)} {Vz

I, —isin(k.)/ Z5  cos(kd.) ||L

—

R;; =R,, so changing directions on
currents does not change [R]

For the receiving cable we can again use the same two port system transfer matrix whose
elements can be obtained with electrical measurements as shown previously.



Receiving cable - experimental values

Amplitude Phase
1.5 10
In immersion setups, ~ 1 Eb 0
cabh.ng and fixtures SR 2 Lo \
holding the transducer
. -20
need to be characterized % 5 10 15 20 0 5 10 15 20
10| -5
~~
<) e
) = 50 O -100
Receiver o a
-15
00 5 10 15 20 0 5 10 15 20
s 0.02 -8
~~
@] —~ 90
= 001 o0
Z Q -1
Mo 1
0 5 10 15 20 0 5 10 15 20
1 10i
N ?l) 0
0.5 ) \
A -100
Cable - 5 ft ~
. -20
Fixture - 2.5 ft % 5 10 15 20 0 5 10 15 20

Frequency (MHz) Frequency (MHz)

In immersion measurements there may be internal cables in fixtures holding the transducer
as well as coaxial cables to the receiver but we can measure the transfer matrix of such
combinations directly in the same manner, as shown here. The behavior of the results are
in general agreement with what we expect from the transmission line model.



Receiver - equivalent circuit

output voltage

receiver —

Iy
Vi =K(®) V,
Vo Zg (©) R (0) Vy
(S . .
Z, (o) ... receiver impedance
K(w) ... receiver gain

The receiver part of the pulser will have some characteristic input electrical impedance and
will amplify the signal. The amplification we can characterize by a frequency dependent
gain factor. We will not include any low or high pass filtering in our receiver model since in
guantitative NDE measurements we normally do not enable those filters. Such filters,
however, can easily be added to our model if desired.
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Receiver - experimental

+Io

amplifier
current probe

—»VR

cable
transducer

V0
Zy(0) =V, (0) / I, (o)

K(w) = Vr(w) / V(o)

If we measure the input current and voltage as a function of frequency at the receiver input
and the receiver voltage output we can calculate both the impedance and the gain.
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Ultrasonic System Components

current probe

The voltage is measured by simply tapping the voltage at a T-adapter while the current is
measured by stripping off a small section of cable and clamping a commercially available

current probe onto the exposed inner conductor. This assembly is placed in a small box as
shown.



Receiver - experimental

Receiver gain

140

measured with 15 \ \ r
a2.25 MHz
transducer

Phase (Deg)

Amplitude

Receiver settings: 1

gain: 20 dB 0
attenuation: 0 dB amplitude
8 L L L I I I I -40
0 0.5 1 1.5 2 25 3 3.5 4
Frequency (MHz)

Shown are some measurements of the amplitude and phase of the receiver gain function
at a particular gain and attenuation setting. The electrical inputs were generated in an
ultrasonic setup where a 2.25 MHz transducer was connected to the receiver. Thus, the
measurements here are only good for the bandwidth of this transducer. If we need to have
a wider response we could use a different wide-band source or a different transducer.
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Receiver - experimental

Receiver impedance

1200

1000 +

800 -

600

Amplitude (QQ)
Phase (Deg)

400

amplitude

200

0 L L L L L L L -150
0 0.5 1 15 2 25 3 3.5 4

Frequency (MHz)

Here is a corresponding impedance measurement of the receiver.
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Reception process model

————————————————————————————————————————

ZE:e

in

R

" [

transducer +  cabling

receiver
sources
F"’_. t _Vf
R
/ (w):VR(“’): KZ;S,
! Fy (w) (Z[f;eRll +Rlz)+(Z[f;eR2] +Rzz)Z:

We can combine all the elements of the reception process into a single transfer function for
reception as shown.



Generation and Reception process models

Both the generation and reception process transfer functions
depend only on the transducer sensitivities and their electrical

impedances:
y (w):VR(a’): KZ,S,
i Fy (a)) (Zif;eRn +R12)+(Zf§;eR21 +R22)Z§
Asa oA
tG (60) = F; (a)) = e Zr SVI'e e
V(@) (Z3 Ty + 1)+ (23T + T ) Z

Here we show the complete transfer functions for both the sending and receiving parts of
an ultrasonic measurement system for a pitch-catch immersion setup. We see that the
transducers impedance and sensitivity are the only parameters we need to completely
characterize the role of the transducers in a measurement so we do not need to know their
transfer matrix components explicitly.



Ultrasonic System Model

V() Ve (@)

X g =
DR

F'(a)) i'lA Fs(w)

acoustic/elastic
processes

7
N o K @
Sl =
./ SIF,
F,

F B VR

—»t—»tA—»tR—»

We now have complete models of both the sound generation and sound reception parts of
an ultrasonic measurement system, leading to the three LTI systems shown. If we combine
the generation and reception process transfer functions with the Thevenin equivalent
voltage source into a system function then we have an even simpler model consisting of a
single LTI system where the system function acts as the input and the transfer function is
the acoustic/elastic transfer function. Thus, if we have a practical way to measure the
system function and if we can model the acoustic/elastic transfer function, we can predict
the measured output voltage.
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Homework problem

5.1

Homework problem from Chapter 5.
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Transducer Characterization

Here we will examine the measurements needed to fully characterize the transducer(s)
used in an ultrasonic measurement system.



Learning Objectives
Pulse-echo experimental determination of impedance,
sensitivity of commercial transducers

Experimental determination of effective radii and
focal lengths of commercial transducers

The transducer parameters we will need to obtain experimentally are the transducer
electrical impedance, the transducer sensitivity, and the effective radius and focal length (if
focused) of the transducer.



Transducer impedance, sensitivity

()= @) zis;
‘ V(@) (ZT, + 1) +(Z0 Ty + T ) 27

e B

tR (0)): VR (0)) — KZ(JSVI

£y (a)) (Zl.f;”R“ +R, ) + (Ziﬁ;gRﬂ +Ry )Zoe

To fully characterize these generation and
reception transfer functions, we need to be
able to obtain the transducers input electrical
impedance and their sensitivities

Again, recall that the transducer electrical impedance and sensitivity are the two key
parameters we need to find to determine the transducer’s role in the measurement
process.



Transducer impedance

Measurement of the transducer input impedance, Z;,, :

Current probe

I

Pulser v Short cable
Transducer
water
Zl_” (w) — M
()

The electrical impedance is easy to obtain if we simply connect a transducer and short
cable to the pulser and measure the voltage and current in the cable before any reflected

signals are received. Taking the Fourier transform of those signals then we find the
impedance directly.



Transducer impedance

Example impedance measurements of two 5 MHz transducers:

1500 1,
transducer 1

1000

Amplitude (Q)
Phase (Deg)

500

Frequency (MHz)

We will show impedances measurements for two 5 MHz transducers. Here are the results
for the first transducer.



Transducer impedance

transducer 2

1500

N
o
o
[S)

Amplitude (Q)

150

1110

71100

Frequency (MHz)

Phase (Deg)

Here are the results for the second transducer.




Transducer impedance

Impedance of a capacitor, Z =1/(-i®C)

-190.5

magnitude s o phase
2 189.5
I S S Y
0 1 2 3 4 5 6 7 8 9 10

frequency

Both of those transducers have a frequency dependent behavior that looks much like that
of a capacitor. Here is a capacitor’s electrical impedance. This is not surprising since a
transducer is a piezoelectric crystal that is plated on both faces.



Transducer sensitivity

Pulse-echo measurement setup for determining sensitivity

pulser/receiver

solid

To determine the sensitivity we can use a pulse-echo immersion setup where we place the
transducer in a water bath at normal incidence to the flat face of a solid block.



Transducer sensitivity

1. measure voltage and current when transducer is
radiating into the fluid but before any reflected waves
have arrived

solid

First, we measure the voltage and current at the pulser/receiver before any reflected waves
have arrived.



Transducer sensitivity

2. do FFT of the measured voltage and current and relate to
the voltage and current at the transducer by compensating
for the cabling

4 (w)‘ [T]

Vm _ 1 T22 _712 Vl
I, det[T] -, T, |,

Note: then the impedance of the transducer is just Z,* =

I/ill
I,

in

We do the FFT of those voltage and current measurements and then, for a known cable,
compensate for the cabling effects to obtain the corresponding voltage and current at the
input port of the transducer. The ratio of this voltage and current again is just the electrical
impedance, but here we do not have to use a short cable to obtain that impedance.



Transducer sensitivity

3. measure voltage and current generated by the waves
reflected from the surface of the block:

solid

Then we measure the received voltage and current at the pulser/receiver generated by the

waves reflected from the block
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Transducer sensitivity

4. do FFT of the measured voltage and current and relate to
the voltage and current at the transducer electrical port by
compensating for the cabling

Sy Vi (w)‘ [T] ‘Vz (@)

—_

VT _ Tzz _le Vz
—Ir det[T] -, T, L

We then do an FFT of the measured reflected wave signals (called V,, |, here) and
compensate for the cabling to get the voltage and current ( V;, |1 ) at the transducer
electrical port. Note the changes in sign consistent with the definitions of inputs and
outputs and the assumed directions of the currents. Ideally, the diagonal elements of the
cable would be identical and the cable would be completely reciprocal but we have allowed
for small differences in the actual measurements.
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Transducer sensitivity

5. From these measurements and a knowledge of the
acoustic/elastic transfer function for this setup we can
obtain the sensitivity of the transducer from:

g4 = |Vadr Vil
vl Asa 72
Z‘AZI' ' Iin

[Note: in all these division processes in the frequency
domain, a Wiener filter is used to desensitize the
process to noise]

One can show that the transducer sensitivity can be obtained from these measurements
since we can model the acoustic/elastic transfer function for this setup and the acoustic
radiation impedance of the transducer. We will not show those models here.
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Transducer sensitivity

Example sensitivity calculated for a

5MHz planar transducer:
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Here is an example sensitivity calculated for a 5 MHz transducer.
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Transducer sensitivity

the sensitivity:

Cabling effects need to be accounted for in determining

= Compensation
= * = No compensation |

The compensations for cabling were important in these measurements as shown here,
where the results when cabling effects are ignored are also shown. We could, of course,
also eliminate those cabling effects by doing the measurements directly at the transducer’s
electrical port, but because this is an immersion setup those measurements would have to
be taken under the water and it is more practical to do the measurements at the

pulser/receiver.
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Transducer Effective Parameters

Use of manufacturer specifications for parameters such as
transducer radius and focal length in transducer models
do not always lead to good agreement with experimental
measurements.

Thus, we need to determine experimentally "effective" values
for these parameters.

A manufacturer will specify quantities such as transducer radius and focal length for a
commercial transducer but those values may not be able to be used directly in models of
ultrasonic measurements without causing errors, which can sometimes be large. Thus, we
need to be able to determine experimentally these parameters, which we will call effective
parameters.



Transducer Effective Parameters

Effective radius for an unfocused (piston) immersion probe

ALAALAL sample

:> FFT
A . .

plot 5 MHz component

PN
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|p| v Versus z
1.4
PCVyi2
1
o :> find z,;, determine

06 ﬂ a,;

2 L) 05 1 15 2 25 3 35 4 ae_[f‘:\lz//{’zmin

We can measure the effective radius of an unfocused circular transducer by placing a small
reflector in a immersion tank and moving that reflector at different distances along the
central axis of the transducer. A frequency domain model of the on-axis pressure
distribution on the axis of the transducer shows that in the so-called near field of the
transducer there are series of peaks and nulls in the pressure at a given frequency. Those
pressure variations will cause the measured frequency components of the received voltage
from the reflector also to vary. Thus, if one measures the time domain waveform received
from the reflector at a given distance and does an FFT to get the frequency components of
the signal, then one can look at the response at a given frequency (say 5MHz as shown
above). If this same 5 MHz response is obtained when the reflector is at different distances,
one can locate the distance, z,;,, , where the 5 MHz response has its last zero value. Since
this distance is related to the radius of the transducer and the wavelength (and hence, the
frequency) one can use it to predict an effective radius value. In principle this effective
radius should not depend on the choice of frequency but experiments show that there can
be some variation with frequency so if that is the case then one usually uses an average
effective radius value calculated at different frequencies over the bandwidth of the
transducer.
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Transducer Effective Parameters

Effective radius and focal length for a spherically focused probe

B 22z, (RU )q/

a .. =
7 (RO )eﬂ —Z min

T—X
R) =
( 0)4/ Zmax {;z—x(zmax /Zmin)}

where x is the root of:

Ipl
pCvy

4 ’\
2
0 0.5 1 1.5 2 25 3 35 4

z. J xcos(x):wsin(x)

T—X

For a spherically focused transducer we must determine both an effective radius and an
effective focal length so we will need at least two measured values. Again, we can use the
same setup just described and obtain the magnitude of the response at a given frequency
for a reflector at different distances along the transducer central axis. A model of a
spherically focused circular transducer shows that the transducer has an on-axis pressure
response as shown above. Here, one measures the location of the large peak of the
response (which is called the true focus) and the same last on-axis null. The model then
also shows that we can obtain the effective radius and focal length values from those two
measurements. The null location is usually easy to measure but the exact location peak is a
bit more difficult to obtain so one can use a number of possible peak locations to try to
determine those effective values that best fit the on-axis response at other points as well.
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Transducer Effective Parameters

Effective transducer parameters determined experimentally:

Probes Manufacturers Specs | Estimated Parameters | Center
focal length radius | focal length radius | Frequency
(cm) (cm) (cm) (cm) (MHz)

A 7.62 0476 |13.47 0.451 10

B 7.62 0.635 [20.74 0.556 5

C 7.62 0.476 |7.45 0.469 15

These values should be independent of frequency but in
practice they do vary somewhat with the frequency component
used in their determination.

Here are some example calculations of effective transducer parameters. These values were
obtained by measuring the on-axis response at the center frequency of the transducer.
Other frequencies may give somewhat different values. One can see that in some cases the
results are quite different from the manufacturer’s specifications.



Homework problem

6.1

Homework problem from Chapter 6.
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The System Function

Here we will examine the system function and its experimental determination.



Learning Objectives
Combination of transfer functions and Thevenin equivalent
pulser source term into a single factor — the system function

Relationship between the system function and the system
"efficiency" factor

Experimental determination of the system function
by deconvolution

Examples of synthesizing an entire ultrasonic measurement system
and predicting the measured signals

One can collect the sound generation and sound reception transfer functions together with
the Thevenin equivalent voltage source of the pulser into a single function called the
system function which we can obtain experimentally through models and measurements .
We will relate this system function to a closely related function called the system efficiency
factor which has been used in earlier studies. We will give a number of examples of the use
of a system function to predict the detailed characteristics of measured ultrasonic signals.



The System Function

E@) Y, T ()
\ acoustic/elastic
processes
4 i
e Tt Tt
s(0)=ro(@)i (@) (0) 2] L ﬂw) @

Here we see a complete ultrasonic NDE system characterized by three transfer functions
and a “reduced” model of the system where the sound generation and reception transfer
functions are combined with the Thevenin equivalent voltage source to model the system
as simply the acoustic/elastic transfer function where the system function serves as the

driving input.



The System Function

s(@)=tg (@)t (@)V,(@) ... system function

There is a relationship between s(w) and the system “efficiency”
factor, A w), [ Schmerr, Fundamentals of Ultrasonic Nondestructive
Evaluation, 2" Ed. ] : ()
Paye \ @
_ tp a) — ave
Ve(@)=B(e)(0) )= )

piston velocity L
. average incident pressure

=) ] Pue(®@)

In earlier studies the acoustic/elastic transfer function was defined as the average incident
pressure acting on the receiving transducer divided by the density and wave speed
multiplied by the uniform velocity on the face of the transmitting transducer, as shown.
When we relate the received voltage to this acoustic/elastic transfer function and a driving
input, the driving input is called the system efficiency factor, which different from the
system function. We can use either the system function or the system efficiency factor but
we must be aware of the differences.



The System Function

Vi(o)=B(e)ii(0)  Vi(w)=s(o) (o)

where P _ Pac\®) (a)) = Fy (a))
O ey R o)
For piston transducers, Fy(@) =2pg,.(@)Sg
high frequency F(o)= pev,(0)Sy

Sg» St ... areas of receiving and transmitting transducers

— s@)=2L @)

If we compare the system function and system efficiency factor and the corresponding
acoustic/elastic transfer functions then for piston transducers and at high frequencies,
where the acoustic radiation impedance is just a plane wave acoustic impedance, we see
the system function and system efficiency are just proportional to each other.



The System Function

Two methods to find s(®):

A. Measure all the components needed to obtain ty(®), t5(®),
V,(®) by the methods indicated previously. Then combine
these measurements to give

s(@) = tr(@)tg(@)Vi(@)

KZz:SE zZresa

o~vI r

V(@)

Zi[:;‘JRll +R, ) +(Zi[:;€R2] + Rzz) Z, (Zif;‘)T]] +T, ) +(Zil:;()TZI + TZZ)Zie ‘

s(a))z(

Now, consider how we can experimentally measure the system function. There are two
methods. The first is to relate the system function to all of the underlying components and
measure those components. This is lengthy but possible since we have demonstrated how
to measure or model all of those components.



The System Function

Vi(@)

B. Measure Vy(m), model t,(o), compute S(@)=
t (@)

&

t,= Zexp[—a(a))D]{ exp ika)

AANAANAA 4 72
—— [ sin’ uexp[ikfv D* + 4a’* cos’ u du]}
ju .
| f—p—>»t 0

2a

A deconvolution by

s(w) = £ (@) straight division
Wiener filter s(w)= ZVR ((Zo)t" () -
deconvolution |tA (a))| +& max {|tA (‘0)| }

The second method, which is much simpler, is to measure the received voltage in a
calibration setup where the acoustic/elastic transfer function can be modeled explicitly and
then obtain the system function by deconvolution (division in the frequency domain).
Shown is an example pitch-catch setup where the two transducers are placed in an aligned
fashion in a water bath and the acoustic/elastic transfer function is given. To stabilize the
deconvolution it is not implemented by straight division but through the use of a Wiener
filter that includes a small filter constant, «.



The System Function

Comparison of system factor obtained with both methods.
method A : synthesized
method B: measured

x 10
e}
6 thesized
g(f) / synthesize
4 I'\\
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2 ’ / \\\
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Frequency (MHz)

Here is an example of using both of these methods to obtain the system function. We see
that generally we have good agreement.



The System Function

Example setups where t, is known

ANAANAN AAANA N
o] o |——
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Here are a wider class of setups where the acoustic/elastic transfer function can be
modeled explicitly and used to determine the system function through deconvolution.
Most of these are for pulse-echo setups, but we do have one setup suitable for a pitch-
catch or through-transmission inspection.



The System Function

If all the electrical and electromechanical components of an
ultrasonic measurement system are measured to obtain s(®),
then this s(®) in conjunction with a knowledge of t, can
used to determine the output voltage of a measurement
system.

The following examples are shown for this setup:

ve (2)
& . G

Although direct measurement of the system function through deconvolution is much
simpler than measuring and combining all the underlying system components , a
knowledge of those components lets us examine how the measured voltage is affected by
all the individual components so that we could, for example, predict how a change of a
transducer(s) sensitivity affects the measured voltage when designing a measurement
system.

Here, we will give a number of examples of the voltage versus time waveforms predicted
for the setup shown compare to the actual measured signals when all the components of
the system function are measured.
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The System Function

0.6
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Results for a pair of SMHz, 6.35 mm diameter transducers.

solid line — directly measured output voltage in an ultrasonic pitch-catch setup.
dashed-dotted line — voltage signal synthesized by modeling all the ultrasonic
components and performing an inverse FFT to obtain the time domain signal.

First example. All the system components were measured and combined with the
acoustic/elastic transfer function to obtain the measured voltage in the frequency domain
that was then inverted into the time domain and compared with the directly measured
voltage signal.



The System Function

voltage, volts

2 25 3 3.5 4 4.5

time, usec

Results for a pair of 2.2 SMHz, 12.7 mm diameter transducers.

solid line — directly measured output voltage in an ultrasonic pitch-catch setup.
dashed-dotted line — voltage signal synthesized by modeling all the ultrasonic
components and performing an inverse FFT to obtain the time domain signal.

Second example. Again, all the system components were individually measured.
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The System Function
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Results for a pair of 10 MHz, 6.35 mm diameter transducers.

solid line — directly measured output voltage in an ultrasonic pitch-catch setup.
dashed-dotted line — voltage signal synthesized by modeling all the ultrasonic
components and performing an inverse FFT to obtain the time domain signal.

Third example. Again, all the system components were individually measured.
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The System Function
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(a) Results for a SMHz, 6.35 mm diameter transducer.

(b) Results for a 10 MHz, 6.35 mm diameter transducer

solid line — directly measured output voltage in the ultrasonic pulse-echo setup.
dashed-dotted line — voltage signal synthesized by modeling all the ultrasonic
components and performing an inverse FFT to obtain the time domain signal.

All the previous examples were for a pitch-catch setup. Here are examples for several
transducers in the pulse-echo setup shown above.



Homework problem

7.1

Homework problem from Chapter 7.
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Transducer Sound Radiation

An important part of the acoustic/elastic transfer function are the waves generated by an
ultrasonic transducer. We will describe those waves here.



Learning Objectives

Planar Immersion Transducer
on-axis near field - far field
radiation into solid-normal incidence, plane interface
diffraction correction

Spherically focused transducer
on axis field
focal spot size
radiation into solid-normal incidence, plane interface
diffraction correction

We will examine with models some of the basic characteristics of the wave fields generated
with planar and spherically focused immersion transducers.



Learning Objectives (continued)
Contact P-wave transducer on a solid

wave types present
directivity functions

Angle beam shear wave transducer

Overview of beam theories

We will also examine the wave fields of other types of transducers such as contact and
angle beam transducers and give a brief summary of the types of theories that are available
to model transducers.



Ultrasonic Beam Models

Planar transducer radiating into a fluid

1 /\M/\
Y,y
X’X' X= (Xa}I’Z)
r
z,7'
Y=y =0)

" infinite baffle

Can show that each area element that is in
motion acts like a source of spherical waves:

—iwpv (x',y', w)dS exp(ikr
p(x, .z, 0) = LA B 2XP)

First, consider a planar (unfocused) immersion transducer radiating into a fluid. We will
model the transducer ( in the frequency domain) by assuming that there is a velocity field
acting normal to the transducer face over the surface, S, of its face and that the rest of the
plane is motionless (called a rigid baffle). If we examine a small element, dS, of that
surface, we can show that this element acts like a point source and radiates a spherical
wave and generates a small pressure, dp, which is shown.



Adding up all such sources over the face of the transducer gives
the Rayleigh-Sommerfeld Integral

p(x,y,z,a)):

—iap j v, (x, ), @)exp(ikr) as(y)
o r

If we let v,(xy',®) = vo(®) (piston model)

\/\

= p(ny.n0)- —iwpv, (o) j exp (ikr) as(y)

2 S r

If we add up all such spherical waves then the total pressure at any point in the fluid is
given by the Rayleigh-Sommerfeld integral (also called the Rayleigh integral). For a piston
transducer this integral becomes the simpler form shown. In this form we are simply adding
up (in integral form) spherical waves originating the face of the transducer.



plot of the magnitude of the pressure for a 5 MHz, 0.5
inch diameter transducer radiating into water

Note: horizontal axis scale is much larger than vertical axis scale

If we numerically evaluate the Rayleigh-Sommerfeld integral for a 5 MHz, 0.5 inch diameter
immersion transducer, we can show a cross-sectional plot of the pressure wave field, where
red indicates high pressure and blue is low pressure. We see that close to the transducer
there is a complex field and that overall the wave field is well collimated, i.e. it is contained
mostly in a cylindrical region extending into the fluid from the transducer face. Note that
what we are seeing here is the pressure in the frequency domain at a frequency of 5 MHz.
A real transducer puts out a pulse of sound but if we compute the FFT of a piston
transducer where the velocity on its face is a delta function in time and examine the 5 MHz
component of that response at all points in the wave field, we obtain this result.



(%, ) = —i;o;vo £ exp(ikr) ds(y)

For on-axis response of a circular transducer of radius, a

It can be shown that
the area element can be
written as dS =r dr d¢

p(z,0)= pcvo[ exp(ikz)—exp(,‘k\/ﬁ) }

direct wave

|

edge wave

For points in the fluid along the central axis of the transducer we can integrate the
Rayleigh-Sommerfeld integral and obtain an explicit expression for the on-axis pressure.
That expression has two terms which we can identify as a direct wave from the face of the
transducer and a wave that has come from the edge of the transducer face.



Direct and edge waves as seen for a pulsed piston transducer

\K edge wave

baftle

— direct wave

)Z edge wave

If we examine the full wave field of the transducer we can show that the direct wave is
actually a plane wave that exists only within a cylinder that extends from the transducer
face while the edge wave is in the form of a wave that appears to originate from the edge
of the transducer and in 3-d looks like a half “donut” in shape.




on-axis pressure:

Ip| e
pCVO 14
a=6.35mm 08
=5 MHz 0s

¢ = 1500 m/s 04

- stance N =, ¥
Approximate Near field distance N = a?/A Example: for a § MHz,

Maxima: z = N/(2m+1) m= 0’1’2" . 1/2 in. diameter transducer

.. radiating into water
Minima: z=N/2n n=1,2,3,... N = Sgin. (approx.)

If we plot the magnitude of the on-axis pressure we see that for distance less than a near
field distance, N, there are successive maxima and minima in the pressure. This is called the
near field of the transducer. At about three near field distances or greater the pressure
simply decays like 1/z in magnitude, which is the characteristic decay seen for a point
source. This makes sense since sufficiently far from the transducer we expect the whole
transducer itself will appear as a small point-like source. This region z > 3N is called the far
field region of the transducer. We will say more about the far field later.



Paraxial approximation : a/z <<l

2
aL \laz—i-z2 Ez(l-i—za—z-i-...j
z

on-axis pressure: 5
) ika

p(z,w) = pevy exp(ikz) 1 —exp B
z

! !

plane wave C,(a,0,2)

<~— diffraction coefficient

If we assume that we are not too close to the transducer so that we can assume a/z <<1
(note this does NOT assume we are in the far field) then we can use this so-called paraxial
approximation to write the on-axis pressure as simply a plane wave multiplied by a
correction factor called a diffraction coefficient. Thus, in the paraxial approximation we can
treat the on-axis wave field as a quasi-plane wave. Basically, the paraxial approximation
assumes the waves are all approximately traveling in the z-direction. From our previous
cross-sectional view where we saw the pressure wavefield was well-collimated we can
expect the paraxial approximation can be used also for off-axis points, not just the on-axis
points seen here.
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on-axis pressure:

pl
PCVy 1

exactresult

pl
pcvy

paraxial result

Here we can compare the exact on-axis pressure with the paraxial approximation result,
showing we capture both the near field and far field behavior well with the paraxial
approximation. Generally, the paraxial approximation is valid if we are greater than about a
transducer diameter away from its face.
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function p = on_axis(zN, A,c,F)

% exact on axis pressure from a piston source
%radiating into a fluid. A is radius in mm, c the
%wavespeed of the fluid in m/sec, F the frequency in MHz,
% zN is the distance in the fluid divided by the near field
%distance a*2/lamba (lamba is the wavelength)

al= 1000*A*F/c; % a/lamba

ka = 2*pi*al; % ka for the transducer

kz = ka*al*zN;

ke = 2*pi*(al"2).*sqrt(zN.”2 + (1/al)*2);

p = exp(i*kz) - exp(i*ke);

Here is the MATLAB code for calculating the exact on-axis pressure.
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function p = par_on_axis(zN, A,c,F)

% paraxial axis pressure from a piston source

%radiating into a fluid. A is radius in mm, c the
%wavespeed of the fluid in m/sec, F the frequency in MHz,
% zN is the distance in the fluid divided by the near field
%distance a"2/lamba

al= 1000*A*F/c; % a/lamba

ka = 2*pi*al; % ka for the transducer

kz = ka*al*zN;

ke = ka./(2*al.*zN);

p = exp(i*kz).*(1 - exp(i*ke));

Here is the MATLAB code for calculating the on-axis pressure in the paraxial approximation.
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MAT> z = linspace(.2, 4,500);
MAT> p = on_axis(z,6.35,1500,5);
MAT> plot(z, abs(p))

MAT> xlabel('z/N")

MAT> p =par_on_axis(z, 6.35, 1500, 5);
MAT> plot(z, abs(p))
MAT> xlabel('z/N")

Here is the MATLAB code for generating the on-axis comparison plots we have just seen.
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On-axis response at normal incidence to a plane interface
(paraxial approximation)

AAAA
fluid pl’cﬁl solid pZ’CpZ’CA‘Z
@ ] | X
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‘ |
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v(x,0)=-iou(x,0)=v,(0)T;"d, exp(ikmzl +kp222)|:1_exp[z ;a ﬂ

velocity in transmission coefficient C (a o 2)
the solid (at normal incidence) T
(velocity/velocity) / -, 4 Cp2 -
1 2
same diffraction correction ¢

expression as for a single fluid

Since the wave field of the transducer behaves like a quasi-plane wave in the paraxial
approximation, we can use plane wave theory and obtain the wave field in more complex
situations such as where an immersion transducer radiates a compressional wave into a
solid, where the transducer is at normal incidence to a plane fluid-solid interface. In this
case we can write the velocity field as that of a plane wave that has traveled in the fluid and
across the plane interface multiplied by a diffraction correction. In this case we can show
that the diffraction coefficient is the same as that for the single fluid problem where the
distance z is replaced by the equivalent distance shown.
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_ALALAAL "virtual" point where the edge
wave would arrive on-axis in
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We can give a physical interpretation of the equivalent distance by examining a wave that
arrives on the axis from transducer edge. Using the geometry, Snell’s law, and the paraxial
approximation, we see that the equivalent distance is just the distance along the axis the

edge wave would travel if it had simply been propagating in a single medium.



Far-field beam of a planar piston transducer

The far-field is usually defined as z > 3N - also
called the "spherical wave region"

Y=oy -y)
= J(Re-y)-(Re-y)

y=(%y.0)

r

= R{1-2e-y/R
=R-ey

—iwpv, CXp (ikR)
2z

r(x.0)=

[ exp(—ike-y)dxdy
s

Here we will examine the far field region of a piston transducer in more detail. We will see
that we can get explicit results for the pressure anywhere, not just on axis. We can examine
the radius, r, from a point on the transducer face to a general point in the fluid and
approximate that distance in terms of the radius, R, from the center of the transducer and
the unit vector, e, which defines the direction to the point in the fluid. As a function of R,
we see the behavior exp(ikR)/R is just that of a spherical wave so in the far field the
wavefield of the transducer behaves like a spherical wave whose angular dependency is
governed by the remaining integral . The remaining integral is one we can performina
number of cases.
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Define the 2-D spatial Fourier {1 inS

transform of ® , where ®=
0 otherwise
as .
F(ex,ey,a)) = (2”)2 LIGXP(—iPXX—ley)dXdy Dy = kex
B - p,= ke
= (27[)2 LL@(x.y)exp(—szx—zpyy)dxdy Y Y
Then the far field pressure can be written as
exp (ikR
p(x,0)= —27zia)pv0F(ex,ey,a))M

angular beam profile spherical wave

The remaining integral can be expressed as a 2-D Fourier transform, F, of a characteristic
function, ® , which is just equal to one on the plane of the transducer face and zero outside

that face. This integral gives us the angular beam profile.



Rectangular Piston Transducer

b p(x,@)=-27iwpv,F
X
/%
V4

sl )l 5
Flewe,)= (27,) ( j(kaej

e, =sinfcos @

In spherical coordinates ] ]
e, =sin@sing

exp(ikR)

Here is the expression for the angular beam profile of a rectangular transducer in terms of
spherical angles.
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Example far-field pattern of a rectangular transducer

a =3 mm in y-direction , b = 6 mm in x-direction
=70 mm, f=5 MHz.

y-axis distance

&
IS
%
N
IS
B

x-axis dlstance

If we make a contour plot of the angular beam profile in a plane parallel to the transducer
face in the far field we see a central lobe and multiple side lobes
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Circular Piston Transducer

R p(x.0)= —Z”iWPVoFM
0 P
z Flewe,o S
X3¥yo
ep:m:mg:% 27 kepa)
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pevy
£ E 0 adial d\star‘E‘ mm

Similarly for a circular piston transducer we can obtain the angular beam profile in terms of
a Bessel function. Here, we plot the magnitude of the pressure at both three and six near
field distances from the transducer, showing how the main lobe of the transducer and the
side lobes spread as we get further from the transducer and , of course, the amplitude gets
smaller due to the spherical spreading term



function [p, rho] = far_field(ang,A, c, F, RN)

% far_field computes the normalized far field pressure

% for a circular piston (omitting the exp(ikR) phase term)
% A is the radius of the transducer in mm, c the wavespeed
%in m/sec, F the frequency in MHz, and RN is

%the normalized radial distance in near field units.

% rho is the transverse distance (normal to z) in mm

ka = 2*pi*(1000*A*F/c);

al= 1000*A*F/c;

x = ka*sin(ang*pi/180);

rho =RN*(A*al)*sin(ang*pi/180);

p = -1*(ka/(al*RN))*besselj(1,x)./(x+eps*(x ==0));

MAT> ang = linspace(-10, 10,500);

MAT> [p,r] =far_field(ang,6.35,1500,5,3);

MAT> plot(r,abs(p), '--")

MAT> hold on

MAT> [p,r] =far_field(ang,6.35,1500,5,6);

MAT> plot(r,abs(p), 'red")
MAT> xlabel('radial distance, mm")

Here is the MATLAB code for obtaining the plots on the previous page.



Spherically Focused Piston Transducer Radiating
Into a Fluid

O’Neil Model
Ry

uniform
velocity, v,

e

S; ... spherical surface

p(x.0) = —iwpv, gexp(ikr) 4sy)

27

A real spherically focused transducer is made by placing an acoustic lens on the face of the
transducer. However, O’Neil has shown we can also obtain the same focusing by placing a
uniform velocity on a spherical surface, which is the model we will use here. Thus, the form
of the model is the same as the Rayleigh-Sommerfeld planar transducer model but we now
have to integrate over a spherical surface.



For x on the central axis

dS=rdrdd/qy q,=1-2R,

P(x.0)= ,D;Vo [eXp(ikZ) - exp(ikre )]

Qz\/(z—h)2+a2 thO—\[Rg—az

On the axis of the transducer we can use the O’Neil model and, like the planar transducer

case, obtain explicit results for the on-axis pressure.
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a=6.35mm on-axis pressure versus z/R:

=76.2
Ifio 10 MH;nm Lﬁ True focus
¢ = 1480 m/
Ipl
pevy B

If we plot the on-axis pressure we see the pressure is enhanced near the geometrical focus
where z/R =1 but the maximum pressure occurs at a slightly smaller distance called the
true focus. As the frequency gets smaller the distance grows between the geometrical
focus and the true focus. Again, we see rapid oscillations in the near field. However, unlike
the planar transducer we can see one or more nulls beyond the maximum pressure
location like the one seen here. In some cases, however, such nulls may not exist.
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function p = focused _on_axis(zR, A,c,F,R)

% on axis pressure of a spherically focused probe

% as a function of the normalized distance, zZR = z/R

%A, radius of the transducer in mm. R , focal length in mm.
%c, the wave speed in m/sec, and F the frequency in MHz
al=1000*A*F/c;

ka=2*pi*al;

zN=(R/A)*(1/al)*(zR);

kz=ka*al*zN;

kR=2000*pi*F*R/c;

kh=kR-sqrt(kR"2-ka"2);

kre=sqrt((kz-kh)."2+ka"2);

p = (exp(i*kz) -exp(i*kre))./(1-kz./kR);

MAT> zR=linspace(.2,4,500);

MAT> p = focused_on_axis(zR,6.35,1480,10,76.2);
MAT> plot(zR,abs(p))

MAT> xlabel('z/R")

Here is the MATLAB code for the spherically focused transducer on-axis behavior.
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Paraxial Approximation

aqu
2z

r,=z+

on-axis pressure:

0
\ |

q0=1-2z/R,

p(z,0) = pev, exp(ikz){i {] - exp[ik‘i%ﬂ}
q z

Cl(aa Z, RO ,(,0)

plane wave diffraction coefficient

In the paraxial approximation we can again represent the pressure as a plane wave term

multiplied by a diffraction coefficient.
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on-axis pressure -

exact Ipl
pcv °

paraxial el
peve

Comparing the exact and paraxial results we see again very good agreement. If the
transducer is very tightly focused the paraxial approximation will not be accurate but most
NDE transducers are not that tightly focused.
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function p = par_focused on_axis(zR, A,c,F,R)

% as a function of the normalized distance, zZR = z/R

%A, radius of the transducer in mm. R , focal length in mm.
%c, the wave speed in m/sec, and F the frequency in MHz
al=1000*A*F/c;

ka=2*pi*al;

zN=(R/A)*(1/al)*(zR);

kz=ka*al*zN;

kR=2000*pi*F*R/c;

qo=1-kz./kR;

p = (1-exp(i*ka*(A/R)*qo./(2*zR)))./qo;

MAT> zR=linspace(.2,4,500);

MAT> p = par_focused_on_axis(zR,6.35,1480,10,76.2);
MAT> plot(zR, abs(p))

MAT> xlabel('z/R")

% on axis pressure of a spherically focused probe,paraxial approx.

Here is the MATLAB code for the paraxial on-axis pressure
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Another way to model focusing (in the paraxial
approximation)

suppose on a planar aperture we have a spherical wave
propagating (generated by a lens, for example)

RS
p[ \ ’ o) z
B, —

then on the aperture we have a phase given approximately
in the paraxial approximation (»,/R, <<1) by

exp(—ik[rS —Ro]) = exp[—ik [./pg +R —Roﬂ

=exp (—ikpg /2R, )

Instead of using the O’Neil model we can model the effects of spherical focusing by
considering an inward traveling spherical wave (as might be generated by a lens, for
example) that is incident on a planar aperture. In the paraxial approximation we can
examine the phase of this spherical wave.
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Thus, suppose we use a Rayleigh-Sommerfeld model for a
planar transducer and place this phase (in the paraxial
approximation) in the integral:

—i, o exp (ikr
p(x,0)= %O()Hexp(—ikpg /2R0)¥dS
N

Using the paraxial approximation and evaluating this
integral exactly for x on the transducer axis gives for a
circular transducer of radius a:

r(z,0)= pevy exp(ikz) [1 —exp (ika2q0 / 22)}
9

Similarly, off-axis values will also represent those from a
focused transducer

If we now insert that phase into the Rayleigh-Sommerfeld integral and perform the
integrations in the paraxial approximation, we obtain an on-axis result which agrees with
the O’Neil model in the paraxial approximation. Other points in the wave field will also
agree. This method of generating focusing we will see later is very useful when we discuss a
Gaussian beam model of the transducer wave field.



Wave field in the plane at the geometric
focus of a spherically focused transducer

T F/zﬁo sin @

5 exp(ikﬁo) J, (kay/]?o)

p (x, a)) =—iwpv,a =

R, kay /R,
1 RO
. W, =443 L=1411F
P/Prnax l6an ka

0 A ... wavelength

TN\ N F=R,/2a ... transducer
B B i F number

kay/R,

Another case where we can evaluate the O’Neil model exactly is to obtain the wave field in
a plane located at the geometric focus of the spherically focused transducer. We see that
this field is controlled by a Bessel function behavior that is identical in form with that for
the far field behavior of a circular piston transducer. An important measure of the wave
field on this plane is the -6 dB beam width, W;, where the peak amplitude has dropped to
one half of its on-axis maximum value. We can show that this beam width is controlled by

the wave length and the transducer F-number.
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On-axis response at normal incidence to an interface
(paraxial approximation)

_AAAAL
fluid A6, solid " p,, €)25Css
d, )
displacement | z zZ, |

! o

v(x,0)=—iou(x,0) = voﬂg;’)dp exp(z’kplzl +k 2, ){; l:l —exp {—l "1; %o H }
z

T T \ " |

velocity
transmission coefficient a , z -
(velocity/velocity) f =4 + 22
same diffraction coefficient @ 1=

expression as for a fluid

In the paraxial approximation we can also obtain an explicit expression for the on-axis
velocity of a spherically focused P-wave transducer radiating at normal incidence into a
solid through a plane interface. We simply multiply the result for a plane wave being
transmitted through the interface by a diffraction coefficient which is the same as for the
radiation into a fluid, but where the on-axis distance in the fluid case is replaced by an
effective distance and the q, focusing term also contains that effective distance.

33



Contact P-wave Transducer Model

- Py ... pressure

stress-free
surface

solid s

For bulk waves X'

; exp(ik,,D "
u(x,)= P g 00y P2 sy

Cs1 8,

2

explik,, D
P [K,(¢)d] p(—m)ds(xw)
2’ﬂ'lolcpl S, D

Now, consider a contact P-wave transducer sitting on the plane stress-free surface of an
elastic solid. We cannot model this transducer as a piston source since the stiffness of the
solid is likely the same order or larger than the stiffness of the transducer. However, since
there is a thin fluid layer between the transducer and the solid, it makes sense to model the
transducer instead as producing a uniform pressure over its active surface. We will see
shortly that such a pressure will produce a complex set of waves, but an important set of
those waves consist of radiating spherical P- and S- bulk waves that are contained in
Rayleigh-Sommerfeld-like integrals, as shown above. Unlike the immersion transducer case,
however, these integrals include directivity factors and polarization vectors.
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Here the directivity factors are plotted as a function of the angle from the normal to the

surface.

. .. . v 2 (.2 2
Directivity functions cos O'k; (Kl /2—sin” & )
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function [kp,ks] = directivity(ang, cp, cs)

% computes the directivity functions for a p-wave contact
%transducer. ang is angle in degrees, cp, cs are p- and s-wave
Y%speeds

k = cp/cs;

angr = ang*pi/180;

X = sin(angr);

¢ =cos(angr);

g=(x."2 -k"2/2)./2 + x. 2. *sqrt(1 - x.22).*sqrt(k”2 - x.12);
kp = ¢.*(k"2).*(k."2/2 -x."2)./(2.%g);

ks = (k*x <1).*c.*(k"3).*x.*sqrt(1 - k"2.*¥x.72)./(2.*g);

MAT> x = linspace(0,90,200);

MAT> [kp,ks] = directivity(x, 5900, 3200);
MAT> plot(x, kp)

MAT> hold on

MAT> plot(x, ks)

MAT> xlabel('angle, degrees')

The MATLAB code for the directivities.
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For 0" small K,=1,K;=0
exp(ik D
p0n2 J' rl )dS

27mpCyy s D
pl o7

Full set of waves : contains direct
and edge P-waves

u(x',m)=

Dr ... Direct P-wave

EP ... Edge P-wave | Er
Es ... Edge S-wave Dr

H ... Head wave

R ... Rayleigh wave

Like the immersion case, a contact NDE transducer will operate at high frequencies where
the transducer beam will be well-collimated and so the fields will be small when the angle
from the transducer normal is not small. Thus, for small angles the S-wave directivity will be
near zero and the P-wave directivity will be close to one, giving an expression for the
displacement in the solid that is again in the form of a Rayleigh-Sommerfeld integral.

We have also shown above a more complete picture of all the waves generated by the
contact transducer. We see a direct P-wave and edge P-waves seen previously in the
immersion case (red lines). These waves are contained in the Rayleigh-Sommerfeld integral
shown above. However, there are also edge S-waves generated and, when the edge P-
waves graze along the free surface, additional “head” waves (also called “von Schmidt
waves”) are generated that link the edge P- and S-waves. Finally, there are also Rayleigh
waves that propagate primarily along and near the surface. Thus, the total wave field is
rather complex. However, not too close to the transducer and near the transducer central
axis, all the waves except the direct and edge P-waves will be small and the Rayleigh-
Sommerfeld integral given above will model the wave response.
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Angle Beam Shear Wave Transducer Model

solid
SV, SH
P
solid kw p
. P \%
Can replace elastic SV S

wedge by equivalent
"fluid" (neglect shear

waves) |
solid \"“P (small for incident

gy  P-wave beyond
critical angle)

“fluid” |

If a contact transducer is placed on the surface of a wedge at an angle and the wedge is
then placed on the surface of an elastic solid (usually with a thin fluid layer between the
wedge and the solid) a complex set of transmitted P- and S-waves will be generated (the
reflected waves are not shown since the wedge is usually designed to suppress their
contributions). If the angle of the wedge is such that the direction of the P-wave in the
wedge is above the first critical angle, then primarily an SV-wave will be generated in the
solid, producing what is called an angle beam shear wave transducer (a small P-wave is
present but it can normally be ignored). Since the waves present in this case are the same
as those present for a fluid-solid interface, we can replace this configuration by an
equivalent fluid-solid configuration and use an immersion transducer model, where we
replace the transmission coefficient for a fluid-solid interface by the transmission
coefficient for two solids in smooth (shear-stress -free) contact.
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Ultrasonic Beam Models

Numerically Intense Models
EFIT - K. Langenberg
Finite Elements — W. Lord
Boundary Elements — F. Rizzo
Edge Elements — L. Schmerr, T. Lerch

Surface Integral Models
Generalized Point Source — M. Spies
Rayleigh- Sommerfeld + High Freq. Asymptotics
- L. Schmerr, A. Lhemery, others

Line Integral Models
Boundary Diffraction Wave — L. Schmerr, T. Lerch

Our discussions in this section have centered around Rayleigh-Sommerfeld integral models
of the sound beam generated by a transducer but there are many other transducer models
available. There are numerically intense models representing the transducer surface (and in
some cases the surrounding media) as a collection of very small elements. There are the
surface integral models that superimpose spherical waves from point sources over the
transducer face, and there are line integral models that superimpose a plane wave and
boundary diffraction waves acting over the edge of the transducer.
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Ultrasonic Beam Models

Other Basis Function Models
Gauss-Hermite Models — B. Thompson, T. Gray, B. Newberry,
A. Minachi, F. Margetan

Multi- Gaussian Models
A. Minachi, M. Spies, L. Schmerr and M. Rudolph,
Cerveny (Seismology)

One can superimpose waves other than spherical waves to represent the transducer wave
field such as Gauss-Hermite waves. However, one of the most effective models uses the
paraxial approximation and the superposition of a small number of Gaussian beams. We
will say more about a multi-Gaussian beam model later.
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Homework problems

8.1,8284,85

Homework problems from Chapter 8.
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Ultrasonic Beam Models

A few references — mostly paraxial models

Lerch, T.P., Schmerr, L.W. and A. Sedov,” Ultrasonic beam models: an edge element
approach,” J. Acoust. Soc. Am., 104, 1256-1265, 1998.

Thompson, R. B. and E.F. Lopez,” The effects of focusing and refraction on Gaussian
ultrasonic beams,” J. Nondestr. Eval., 4, 107-123, 1984.

Newberry, B.P. and R.B. Thompson,” A paraxial theory for the propagation of ultrasonic
beams in anisotropic solids,” J. Acoust. Soc. Am., 85, 2290-2300, 1989.

Schmerr, L.W., Rudolph, M., and A. Sedov,” Modeling ultrasonic transducer wave fields
for general complex geometries and anisotropic materials,” Review of Progress in
Quantitative Nondestructive Evaluation, D. O. Thompson and D.E. Chimenti, Eds.,
Plenum Press, New York, 19A, 953-960, 2000.

Here are some references.
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Ultrasonic Beam Models

Schmerr, L. W., Fundamentals of Ultrasonic Nondestructive Evaluation — A
Modeling Approach, 2" Ed. ,Springer, Switzerland, 2016.

Spies, M., and M. Kroning,” Ultrasonic inspection of inhomogeneous welds
simulated by Gaussian beam superposition,” Review of Progress in
Quantitative Nondestructive Evaluation, D. O. Thompson and D.E.
Chimenti, Eds., Plenum Press, New York, 18A, 1107-1114, 1999.

Minachi, A., Margetan, F.J., and R.B. Thompson,” Reconstruction of a piston
transducer beam using multi-Gaussian beams (MGB) and its applications,”
Review of Progress in Quantitative Nondestructive Evaluation, D. O.
Thompson and D.E. Chimenti, Eds., Plenum Press, New York, 17A, 907-914,
1989.

Gengembre,N. and A Lhemery," Calculation of wide band ultrasonic fields
radiated by water-coupled transducers into heterogeneous media," Review of
Progress in Quantitative Nondestructive Evaluation, D. O. Thompson and
D.E. Chimenti, Eds., Plenum Press, New York, 18A, 1107-1131, 1999.

More references. There are many, many more than listed here.
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The Paraxial Approximation

This will be a brief discussion and overview of the paraxial approximation.



Learning Objectives

Introduction to the paraxial approximation and its
importance in beam modeling

Most NDE transducers produce well-collimated beams that can be modeled effectively as
the superposition of waves where the paraxial approximation is valid so we want to
examine that approximation in more detail. This approximation is also key to developing a
multi-Gaussian beam model which is one of the most effective models available for
modeling transducer wave fields so the paraxial approximation is a key approximation for
that reason as well.



The Paraxial Approximation

A transducer generates a complex beam of sound. Modeling that
complexity is a challenging task.

The modeling computational burden can be reduced considerably
by introducing approximations. The paraxial approximation is
one of the most useful of those approximations.

As we have seen a transducer generates a complex sound beam so that modeling that
complexity is challenging. The paraxial approximation will help minimize the computational
burden immensely.



The Paraxial Approximation

The paraxial approximation models the transducer beam as a
quasi-plane wave where most of the sound is propagating in

a given direction with an amplitude profile described by a
diffraction coefficient term, C(x,y,z,m).

L -
-

p=pcv,C(x,y,z,0)exp(ikz —iwr)

In the paraxial approximation the transducer wavefield can be modeled as a plane-wave-
like term modified by a diffraction coefficient that accounts for much of the beam
complexity. We have seen examples of such diffraction coefficients previously. We can call a

wave in this form as a quasi-plane wave.



The Paraxial Approximation

To illustrate the paraxial approximation in a simple setting
consider a spherical wave. Suppose that we are only interested

in the spherical wave field in the vicinity of a particular direction
which we will take as the z-axis (i.e. X,y <<z)

F

r, exp (ikr)

0
r

a2 Pl exp (ikr)

z r
pc r

A spherical wave obviously is not well collimated since it travels in all directions. But

suppose we consider that wave only near a particular direction which we will call the z-axis

here. Shown are the expressions for the pressure and velocity in such a spherical wave
traveling in a fluid at high frequencies.



The Paraxial Approximation

Then, since r=qx*+y* +2°

2 2
/ x Y
A+ +5
22 22

pz

=7+
2z
where  p=q/x° +)°
we find (iksz
1, €Xp Z
= o2 explke) = i 550k
. 2
%, exp(’kzp ]
v, :%+exp(ikz) :%C(x, y,z;0)exp(ikz)

If we expand the spherical radius r in the neighborhood of this z-axis then we can obtain
the pressure and velocity in a quasi-plane wave form.



The Paraxial Approximation

ik p*
. r exp[ 5. ]

el pC o))

= e . jexp(ikz)—%C(x,y,z;a))exp(ikz)

Note that in obtaining this diffraction correction term we only
approximated the amplitude part of the spherical wave to first
order ( r ~ z) while we approximated the phase to second order.
This is because terms neglected in the phase must not only be small
with respect to the terms retained but also must be small with
respect to 2 if they are to be negligible.

In making this approximation we must treat the phase terms more carefully than the
amplitude terms.



The Paraxial Approximation

Consider the wave equation

o’p o'p o 10’
.00 20 170
ox° oy 0z0 ¢ ot

Let p=P(x,y,z,0)explikz —iot]

o’P N o°P N o’P oP

Then - a ik E =0
ox~ oy 0Oz Oz
2 2 2 .
If we assume 0 f << 2l.k8_P , o'p ’ op (parax1gl _
Z oz|'|ox* |’ |oy? approximation)
o’P  &°P oP
— —+—+2ik—=0
a.xz ayZ az

Now, consider the propagation of waves in more general terms. Consider the wave
equation for the pressure and write that pressure in a quasi-plane wave form. The paraxial
approximation assumes that the second derivative term along an axis (taken here as the z-
axis) near which the wave is propagating is much smaller than all the other terms. This is a
purely mathematical definition of the paraxial approximation but shortly we will describe
the meaning of this assumption in more physical terms.



2 2
0 f+6—f+2ika—P:0
ox~ Oy oz

paraxial wave equation

Our paraxial approximation for a spherical wave
satisfies this paraxial equation exactly:

2
p = Polo exp(lkp j

z 2z

There are other solutions, such as Gaussian waves
that also satisfy this equation and form important
building blocks for modeling ultrasonic transducer
radiation in complex problems

Under this mathematical condition the wave equation reduces to the paraxial wave
equation for the amplitude of the quasi-plane wave. Our paraxial approximation for the
spherical wave satisfies this paraxial wave equation exactly and we will see other solutions
as well. The most important of these solutions are Gaussian beams.



The Paraxial Approximation

The paraxial approximation allows one to obtain diffraction
coefficient terms for many practical testing setups

k, =o/c,

° (Xayaz) k2 = (D/Cp2
z ork, = w/cy,

v(x,y,z,z’,a)) =v,7,d C(x,y,z,z', a)) exp(iklz’ + ikzz)

! I T

velocit [ |
Y plane v.va\{e polarization diffracti

transmission d ord 1rrac _lon

coefficient P s coefficient

The paraxial approximation allows us to obtain the diffraction coefficient explicitly in many
important testing setups from a number of more exact models so it can reduce the
computational burden of predicting transducer wave fields considerably.



Limitations of Beam Models based on the Paraxial Approximation

\near critical angles

\ cases where the surface curvature

varies rapidly over the beam width

— 7

at locations too close to
a plane transducer or for
too tightly focused transducers

\

at high refracted angles

The paraxial approximation is, however, as its name implies, an approximation! Thus, it can
be inaccurate in some testing situations. Near critical angles at interfaces, for example, the
fields are rapidly varying and this variation will render the paraxial approximation (which
assumes that basically everything is relatively slowly varying about a single direction)
invalid. Similarly, when inspecting through a curved interface where the surface curvature
varies rapidly, the paraxial approximation is in error. If we are too close to a planar
transducer or are using a very tightly focused transducer the paraxial approximation loses
validity since the waves in those cases are traveling at a wide range of angles, not primarily
along a single direction as the paraxial approximation assumes. Finally, the rapidly changing
wave field when a refracted wave is near to grazing an interface will cause the paraxial
approximation to be inaccurate. Fortunately, these cases are not encountered often in
most testing situations so that the paraxial approximation is very useful and accurate most
of the time.
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Gaussian Beams and Transducer Modeling

This will be an overview of Gaussian beams and their use in transducer modeling.



Learning Objectives
Characteristics of Gaussian Beams

Propagation Laws
Transmission/Reflection Laws

Multi-Gaussian Beam Models for Ultrasonic Transducers

MATLAB Examples

We will discuss some of the important properties of Gaussian beams and show how we can
superimpose a small number of such beams to model a transducer wave field. We will also
give a number of MATLAB examples of such a multi-Gaussian beam model.



Fundamental Waves as Building Blocks

| z plane wave

| p =P exp [ikpz - ia)t]

p= %exp [ikpR - ia)t]

spherical wave

We have already talked about two types of waves, plane waves and spherical waves, that
can be used as fundamental building blocks for generating more complex wave fields.
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beam width
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\ Gaussian beam
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beam waist
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A Gaussian beam is another fundamental building block. Here we will write out the
Gaussian beam in a form that is rather complex looking but will be useful to discuss its
properties. Later, we will express the Gaussian beam in more compact form. The Gaussian
beam is a solution to the paraxial equation. We see that it has an amplitude term which is
of the form of a Gaussian function and involves the beam width, which is a function of the
distance z, the location of the beam waist where the beam width is w, , and a distance
parameter, z., called the confocal distance.
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There is also a term in the exponential which is a function of R(z), the radius of curvature
of the wavefront. We see that for distances z greater than the beam waist location this
radius is positive, representing an outward spreading wave. At very large z the radius is just
the distance z, so it acts like a spherically spreading wave in the paraxial approximation. For
distances z less than the beam waist location the radius is negative, representing an
inwardly curving wave front. At the beam waist the radius of curvature is infinite so the
wavefront is planar. Thus the Gaussian beam can represent many types of propagating
waves.
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propagation term

amplitude term

We see that the Gaussian is propagating in the z-direction so it has the familiar propagation
term we see for waves. There also is an amplitude term which is controlled by the distance
z, the location of the beam waist, and the confocal parameter. For large z this is just the 1/z
amplitude term we see for a spherical wave in the paraxial approximation.
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can get from Gaussian beam by letting

w,=2,=0

If we compare the Gaussian beam with a spherical wave (in the paraxial approximation) we
see there are many similarities. In fact, when the width at the beam waist and the beam
waist location are both zero, the Gaussian beam coincides with the spherical wave

expression.



Paraxial Approximation

X3

plane wave perxp(ikpx1 sin 6 +ik,x, cosH—iwt)

writeas p = P(xl,x3, a)) exp(ikpx3 - ia)t) quasi-plane wave traveling
in the x5 —direction

where  P(x,x,,0)= Aexp[ikpx, sin @ + ik, x, (I—COSH)J

We can get a more physical interpretation of the mathematical criterion for the paraxial
approximation by looking at a plane wave that travels at a small angle from the z-axis. We
can write this plane wave in terms of a quasi-plane wave traveling in the z-direction.



Paraxial Approximation
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If we look at the amplitude expression for this quasi-plane wave we see that is the angle is
small (typically less than about 30 degrees from the z-axis) then the second derivative of
this amplitude with respect to z is much less than the other derivatives shown, agreeing
with the condition we stated earlier for the paraxial approximation to be valid. Thus, if a
beam of sound is well collimated so that it does not spread too much, the paraxial
approximation is valid.



Paraxial Approximation

wave equation (cylindrical coordinates)
with axial symmetry
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paraxial wave equation

So far we have been looking at the wave equation in Cartesian or spherical coordinates. If
we write the wave equation in cylindrical coordinates and examine a quasi-plane wave
traveling in the z-direction, then the form of the paraxial wave equation is as shown.



Paraxial Wave Equation
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Here are the exact solutions to this paraxial wave equation for a plane wave, a spherical
wave, and a Gaussian beam.



Complex form of the Gaussian beam commonly used

q(0)

P=D, q(z) exp[ikpz} exp{

o

We saw earlier that the Gaussian beam has a rather complex structure. However, we can
write it in a much more compact form if we write the Gaussian in terms of a complex g
function as shown.



Gaussian beam amplitudes obey the plane wave relationship

p pmcpm z
density, not radius

0 ik . p’
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Note that we can show that the Gaussian beam amplitudes as measured in terms of
different quantities such as pressure (or stress) and velocity (or displacement) simply obey
the plane wave relationships for those quantities we discussed earlier.



Reflection and Transmission at a Spherical Interface of radius R,
o
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One of the important properties of Gaussian beams is that we can propagate them through
complex geometries and they always remain well-behaved. Consider, for example, the
propagation of a Gaussian beam through a spherically curved interface at normal incidence.
This is a very specific problem that we can use to show the process. We can write the
incident, transmitted, and reflected Gaussians as shown.



Amplitudes are related through plane wave reflection
and transmission coefficients

P (0) =222 =L £ (0)= R, (0)

R 1
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Phase terms are related by

1 _(iz_ ]Lfﬁ;

transmitted beam -
qf(o) Ch R, ¢, q‘.(O)
1 2 1
reflected beam TN T S, TN
q,(0) R, ¢,(0)

T

radius of interface

By matching the amplitudes and phases for pressure and velocity at the interface we can
show that the amplitudes at the interface are related through plane wave reflection and

transmission coefficients and the phase terms are also related.
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Transmission/reflection laws in terms of beam widths and
wave front curvatures

One finds that the beam widths match at the interface and we can also relate the wave

front curvatures.
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Defocusing interface  ¢,, > ¢,

Focusing interface  ¢,, > ¢,

Suppose the beam waist of the incident wave is located at the interface. In this simple case
one can easily see the effects of focusing or defocusing depending on the curvature of the
interface. Even for a focusing interface the Gaussian beam remains well-behaved in the
second medium, unlike a spherical wave which would lead to singularities.
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Consider a Gaussian beam that originates at some distance from the interface. We can
write the incident and transmitted Gaussian beams as shown. We could also look at the
reflected beam but in NDE problems we are often more concerned with the transmitted
wave field.



Gaussian beam transmitted
through a planar interface
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Here is the expression for the transmitted Gaussian beam. We see that it has the same
form as a Gaussian beam traveling in a single medium where we replace the z distance in
the amplitude and Gaussian phase terms by an effective distance, a behavior we have seen

before for other problems in the paraxial approximation.



Gaussian beams in multiple media

pl’cpl pZ’CpZ p356p3 ,04an4

~ qM+l(0) 7 qm(o)
p z N NG :P 0 —_— Tmm+ T
( M ) ( )qM+l(ZM+l)g 161171(2'")

M+1 k 2
~eXp[iZ kpmzm}em{l VUL }

m=1 2 gy (ZM+1)

In fact, we can easily write down the wave field of the Gaussian after propagation through
multiple media. Multiple transmission coefficients are present but the form of the response
remains very similar.



Propagation Laws

qm (Z”’) = q”’ (O) + Zm

Transmission Laws 4,.(0,)= 4,(0,)
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We have seen that the q(z) function plays a key role in Gaussian beam theory. We can write
down explicit propagation, transmission, and reflection laws in terms of this function.



ABCD Matrix Forms of the Laws
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In fact, we can write all these laws in a common form in terms of the elements of a 2x2
ABCD matrix.



Gaussian beams in multiple media
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After transmission or reflection from multiple interfaces the Gaussian beam retains a
simple form in terms of a single ABCD matrix that is obtained simply by multiplying all the
individual ABCD matrices together.



Gaussian beam after propagating through M+1 media

. q, (()) . LT o’
p(zy.1,0) ( )A°ql(0)+B° exp|iot, |exp > M
CG‘I} (O)+ D¢

Gaussian beam in single medium
N 4,(0) . ky __ p’

= P(0)——F~——exp| ik 47 (0)+B"

p(zl,w) ( )A{’ql(O)+B{’ exp[z le]exp 5 M

Cl'q,(0)+Df

_5(0) ¢,(0) exp[ikplzlJeXp|:ikpl 2 }

q, 0)+Zl 2 g, (O)+Zl

A" Bl |1z
c’ pillo 1

Here we see how the Gaussian beam retains its general form even in complex problems in
terms of the ABCD matrices. This is for the very special case of normal incidence on the
multiple interfaces present but a similar behavior is present in more general cases.



Multi-Gaussian Beam Model

circular piston transducer radiating into a fluid
\_: a = v, p<a
E ° |0 otherwiase

add ten Gaussians

v, = vOlZO: A, exp(—Bﬂp2 /az)

n=1

Gaussian beams can be used to develop a very efficient beam model for a circular piston
transducer. Wen and Breazeale showed that one can simply superimpose as few as 10
different Gaussians on the face of the transducer to produce the same wave field that is
generated by a uniform velocity (piston) transducer. These Gaussians will then produce ten
propagating Gaussian beams that we can be propagated in the manner we have just
discussed. This is a multi-Gaussian beam model.
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add ten Gaussians
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Here, for example, is a multi-Gaussian beam model for a single medium. It is expressed in
terms of ten known complex-valued coefficients A, B, .



function [a, b] = gauss_c¢

% piston transducer

a = zeros(10,1);

b = zeros(10,1);

a(l) =11.428 + 0.95175*i;
a(2) = 0.06002 - 0.08013*i;
a(3) =-4.2743 - 8.5562%i;
a(4) = 1.6576 +2.7015%i;
a(5) =-5.0418 + 3.2488*i;
a(6) = 1.1227 - 0.68854*i;
a(7) =-1.0106 - 0.26955%i;
a(8) =-2.5974 + 3.2202*i;
a(9) =-0.14840 -0.31193*i;
a(10) =-0.20850 - 0.23851%i;
b(1) =4.0697 + 0.22726*i;
b(2) = 1.1531 - 20.933*i;
b(3) =4.4608 + 5.1268*i;
b(4) =4.3521 +14.997*i;
b(5) =4.5443 + 10.003*i;
b(6) = 3.8478 +20.078%i;
b(7) =2.5280 -10.310*i;
b(8) =3.3197 - 4.8008*i;
b(9) = 1.9002 - 15.820*i;
b(10) = 2.6340 + 25.009%i;

% gauss_c returns the coefficients developed by Wen and Breazeale to model a

Here are the ten coefficients obtained by Wen and Breazeale.
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Multi-Gaussian beam model of a piston
transducer in multiple media
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These ten Gaussians can then be transmitted or reflected multiple times to obtain the

Gaussian beam in the final medium.
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multi-Gaussian beam model for a
spherically focused circular transducer

add ten Gaussians
o ussi

.

v, = vOiAn exp(—Bn,o2 /az)exp(—ik,o2 /2F)

n=l1

= voi/ln exp(—)g’np2 /az)
n=1

g2
B,=B, + ika
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A multi-Gaussian bean can also easily model a spherically focused transducer by simply
including an additional phase term at the transducer face, as previously discussed. This

term can be easily included by simply changing the B, coefficients in the multi-Gaussian
model.



MATLAB multi- Gaussian Beam Model

T p /p =p /p,
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The time delay factor exp(ikp]z1 +ik],zzz) is not included in this model

% MGB_script

% This script calculates the normalized

% pressure, p/p0, due to a planar piston transducer radiating at normal
% incidence through a spherically curved interface.

% This is a multi-Gaussian beam model that uses the 10 coefficients
% of Wen and Breazeale to calculate the wave field.

clear % clear the workspace so that any previous parameter choices
% are eliminated

We will illustrate a multi-Gaussian beam model by considering the radiation of a planar or
spherically focused piston transducer through a spherically curved interface at normal
incidence, as shown above. A MATLAB script, MGB_script, will be developed explicitly for
this problem. The script first clears the workspace so that any parameters remaining from a
previous calculation are removed.
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Here is the explicit expression we will use and the definition of all the underlying
parameters. We do not use ABCD matrices here since it is a very simple case. We will not
include the propagation phase term here since that term simply provides a time delay term
for the arriving waves but does not affect their spatial distribution. The g, function
describes the behavior of the Gaussian beam in the first medium and the q, function
describes its behavior in the second medium. T, is the plane wave transmission based on
pressure ratios. Shown is a single term in a ten-term multi-Gaussian beam model.
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MATLAB multi- Gaussian Beam Model

% get input parameters

f=5; %frequency (MHz)

a =6.35; % transducer radius (mm)

Fl = inf; % transducer focal length (mm)
z1=0; % path length in medium 1 (mm)

z2 = linspace(6, 125, 200); % path length in medium 2 (mm)
r=0.0; % distance from ray axis (mm)

RO = inf; % interface radius of curvature (mm)
d1=1.0; % density, medium 1 (gm/cm”3)

d2 =1.0; % density, medium 2 (gm/cm”3)
c1=1480; % wave speed, medium 1 (m/sec)
c2 =1480.; % wave speed, medium 2 (m/sec)

These parameters are for a 'z inch diameter, 5 MHz planar
piston transducer radiating into water (no interface). The on-axis
pressure values from 6 to 125 mm are being sought.

Here are the input parameters in the script. The default case is where we are radiating into
a single medium and calculating the on-axis normalized pressure from 6 mm to 125 mm on
the transducer axis for a planar piston transducer.



MATLAB multi- Gaussian Beam Model

% get Wen and Breazeale coefficients (10)
[A, B] = gauss_c;

% transmission coefficient (based on pressure ratio)
T = (2*c2*d2)/(c1*d1+c2*d2);
h = 1/R0; % interface curvature

zr = eps*(f == 0) + 1000*pi*(a”2)*f./c1; % "Rayleigh" distance, ka"2/2
k1 = 2*pi*1000*f./c1; % wave number in medium 1

We also need the Wen and Breazeale coefficients and we define curvature of the interface
in terms of the radius. Two parameters, the Rayleigh distance and the wave number
associated with the first medium are also defined.
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MATLAB multi- Gaussian Beam Model

%initialize pressure to zero
p=0;

%multi-Gaussian beam model
for j=1:10 % form up multi-Gaussian beam model with
% 10 Wen and Breazeale coefficients

b =B(j) + i*zr./Fl; % modify coefficients for focused probe

q=2z1-i*zr/b;
K=q.*(1-(c1/c2));
M = (1 +K.*h);
ZR =q./M;
m = 1./(ZR +(c2/c1).*z2);
t1 =A()./(1 + (i.*b./zr).*z1);
t2 = t1.*T.*ZR.*m;
p =p +t2.%exp(i.*(k1./2).*m.*(r.*2));

end

We then simply add up ten Gaussian beams of the form shown previously, changing the
Wen and Breazeale coefficients for the focused case ( FI = inf for a planar interface) to
compute the normalized pressure.



>> MGB_script

%plot magnitude of on-axis pressure
plot(z2, abs(p))

xlabel('z-axis'")

ylabel('|pl/|pol’)
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[pl/Ipol

0.5

z-axis

After executing the MGB_script, we plot the on axis pressure, showing the near field
behavior of the planar piston transducer.



Cross-axis plot at z = 130 mm (near last maximum)

% get input parameters

f=5; %frequency (MHz)

a = 6.35; % transducer radius (mm)

FI =inf; % transducer focal length (mm)
z1=0; % path length in medium 1(mm)
z2 =130; % path length in medium 2 (mm)

r =linspace(-10, 10, 200); % distance from ray axis (mm)

RO = inf; % interface radius of curvature (mm)
d1=1.0; % density, medium 1 (gm/cm”3)
d2 =1.0; % density, medium 2 (gm/cm”3)
c1=1480,; % wave speed, medium 1 (m/sec)
c2 = 1480 % wave speed, medium 2 (m/sec)

Now, let us change the input parameters in the script (changes in red) and plot the pressure
versus radius at a distance near the last on-axis maximum. Save the script with these
changes and execute.



>> MGB_script

%plot magnitude of on-axis pressure
plot(r, abs(p))

xlabel('r-axis")

ylabel('|p|/|pol')

IpIpol

Here is a plot of the off-axis pressure versus the radius near that last maximum in the near
field, showing a main lobe and some side lobes for the beam
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Cross-axis plot at z = 65 mm (near last on-axis null)

% get input parameters

f=5; %frequency (MHz)

a = 6.35; % transducer radius (mm)

FI =inf; % transducer focal length (mm)
z1=0; % path length in medium 1 (mm)
z2 = 65; % path length in medium 2 (mm)
r =linspace(-10, 10, 200); % distance from ray axis (mm)

RO = inf; % interface radius of curvature (mm)
d1=1.0; % density, medium 1 (gm/cm”3)
d2 =1.0; % density, medium 2 (gm/cm”3)
c1=1480,; % wave speed, medium 1 (m/sec)
c2 = 1480 % wave speed, medium 2 (m/sec)

Now, let us look instead at the cross axis behavior at a distance close to the last on-axis null
in the near field.
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>> MGB_script

%plot magnitude of on-axis pressure
plot(r, abs(p))

xlabel('r-axis")

ylabel('|pl/|po[')

Ipl/Ipol

We see pressure is small near the null on the axis but has large values off axis.
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Now, generate an image of the entire beam

% get input parameters

f=5; %frequency (MHz)
a=16.35; % transducer radius (mm)
Fl = inf; % transducer focal length (mm)
z1=0; % path length in medium 1 (mm)

z2t = linspace(0,200,500);
rt =linspace(-20, 20, 200);
[z2, r]=meshgrid(z2t, rt);

RO = inf; % interface radius of curvature (mm)
d1=1.0; % density, medium 1 (gm/cm”3)

d2 =1.0; % density, medium 2 (gm/cm”3)
c1=1480,; % wave speed, medium 1 (m/sec)
c2 =1480.; % wave speed, medium 2 (m/sec)

To see a cross section of the entire beam we need to change the script to generate a grid of
points in the two-dimensional (r, z) plane.



>> MGB_script

%plot magnitude of the pressure

image(z2t, rt, abs(p)*50)

xlabel('z-axis")

ylabel('r-axis’) Note: unequal scales

r-axis

100 120 140 160 180 200
z-axis

0 20 40 60 80

Here is an 2-D image of the transducer wave field showing its complex behavior (at a given
frequency) in the near field. The magnitude of the pressure has been multiplied by a factor
here so the colors in the image give a good visual of the wave field.
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We can also examine a 10 MHz, 76.2 mm focal length
focused transducer

% get input parameters

f=10; %frequency (MHz)

a =6.35; % transducer radius (mm)
Fl=76.2; % transducer focal length (mm)
z1=0; % path length in medium 1(mm)
z2 = linspace(0,200,500); % path length in medium 2 (mm)
r=0; % distance from ray axis (mm)

RO =inf; % interface radius of curvature (mm)
d1=1.0; % density, medium 1 (gm/cm”3)
d2 =1.0; % density, medium 2 (gm/cm”3)
c1=1480.; % wave speed, medium 1 (m/sec)
c2 =1480.; % wave speed, medium 2 (m/sec)

Now let us consider a 10 MHz spherically focused transducer radiating into water and
examine the on-axis behavior.
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>> MGB_script

%plot magnitude of on-axis pressure
plot(z2, abs(p))

xlabel('z-axis')

ylabel('[p/pol’)

[p/po]
@

. . . . . h
0 20 40 60 80 100 120 140 160 180 200
z-axis

Here is the on-axis plot, showing the large pressure near the focus, the near-field behavior,
and the existence of the null (shown previously) at a distance greater than the focal length.
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Now, plot an image of this focused transducer wave field

% get input parameters

f=10; %frequency (MHz)

a=6.35; % transducer radius (mm)
FI=76.2; % transducer focal length (mm)
z1=0; % path length in medium 1 (mm)

z2t = linspace(0,300,500);
rt=linspace(-20,20,200);
[z2, r]l=meshgrid(z2t, rt);

RO = inf; % interface radius of curvature (mm)
d1=1.0; % density, medium 1 (gm/cm”3)

d2 =1.0; % density, medium 2 (gm/cm”3)
c1=1480,; % wave speed, medium 1 (m/sec)

c2 = 1480 % wave speed, medium 2 (m/sec)

Here we change the script to show a 2-D cross-sectional image.

44



>> MGB_script

%plot magnitude of the pressure
image(z2t, rt, abs(p)*25)
xlabel('z-axis")
ylabel('r-axis")
Note: unequal scales

r-axis

z-axis

Comparing with the previous planar case we clearly see the effects of focusing. We can
consider many other cases but we will stop here.



Homework problems

F.2,F.3

Homework problems from Appendix F.

46



)

Flaw Scattering Models

Having examined the waves generated by transducers we now need to consider the
scattered waves generated when an incident wave strikes a flaw.



Learning Objectives

Far-field scattering amplitude

Kirchhoff approximation
Born approximation
Separation of Variables

Examples of scattering of simple shapes
(spherical pore, flat crack, side-drilled
hole)

We will see that the waves scattered from a flaw can be described in terms of a far field
scattering amplitude and examine three different methods for modeling those scattered
waves. We will examine scattering for some of the simple shapes commonly used as
reference “flaws”.



Flaw Scattering

Fluid Model
Incident plane
e Po & X e
,’/ :—.‘/v
e s
X
Py --. pressure / n
amplitude flaw 4"

At many wavelengths away from the flaw the
scattered waves are spherical waves

exp (ikr,)

I,

s

P (y.0) = pod(esze,) scattered pressure

A is called the plane wave far-field scattering amplitude

In most NDE inspections the flaw being examined will be located at many wavelengths from
the receiving transducer. In that case the flaw acts like a point source having a complicated
radiation pattern, i.e. it radiates a spherical wave with an amplitude coefficient that is
called the far field scattering amplitude. Shown is the case for a scatterer in a fluid where
the incident wave is a plane wave and A is the plane wave far field scattering amplitude. A
is a function of both the incident and scattering directions of the waves as well as the
frequency but we will typically show the unit vectors e, and e, that define the incident and
scattered directions in the arguments of A but not the frequency. Note that A has the
dimensions of a length.



Flaw Scattering

Fluid Model
Incident plane

wave Po e e

Py --. pressure
amplitude flaw

plane wave far field scattering amplitude of the flaw

A(ei;es)zg—;é[ {2—;+ik(es -n)ﬁ}exp(—ikxs -e,)dS(x,)

6_p =—iwpv, p=

on Po

In the fluid case just described we can actually write down an integral expression for the
plane wave far field scattering amplitude in terms of the normalized pressure and its
normal derivative (the normal derivative of the pressure is just proportional to the normal
velocity, as shown), where the integral is taken over the surface of the flaw. The unit vector
e, here is a unit vector in the scattering direction being examined.



Flaw Scattering

A(ei;es):;—;j[%ﬂk(es -n)f)}exp(—ikxs e.)dS(x.)

Sy

To obtain the far field scattering amplitude, we need to know the
pressure and velocity on the surface of the flaw due to the incident
and scattered waves

These quantities can be found by solving a flaw scattering
boundary value problem.

To describe the scattering amplitude we need both the pressure and its normal derivative
(or, equivalently, the normal velocity) on the flaw surface which can be found by solving a
boundary value problem. To avoid having to go into that detail we can try to use
approximations to obtain these surface fields. Shortly, we will examine such approximations



Flaw Scattering

Elastic Solid
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If we look at flaw scattering in an elastic solid we see much the same picture as in the fluid
case but now at many wavelengths the scattered waves are both spherical P-waves and S-
waves and the scattering amplitudes are vectors since they must represent a vector field
such as the scattered displacements. The incident waves themselves also can be either P-

waves or S-waves.



Flaw Scattering

A (eiﬂ ;87 ) Vector scattering amplitude for a scattered wave of
‘ type a due to a plane wave of unit displacement

amplitude and type p
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gradients

We can express both the scattered P- and S-waves in terms of a vector function f which can
be represented as an integral over the surface of the flaw of both the displacements and
the displacement gradients. These surface fields again can be found by solving a particular
boundary value problem or through approximations.



Flaw Scattering

3-D scattering amplitude

B.aoP
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The received voltage in some measurement models is related
to a specific component of the vector scattering amplitude
given by

A(o) =A(e;g;ef) = A(e;g;ef)-(—(T)

polarization vector of an
incident wave from receiving
transducer (to be discussed
shortly)

The received voltage in a measurement is a scalar quantity so that if it is related to the
scattering amplitude, it must involve a specific component of the vector scattering
amplitude, which we call A. We will see shortly that this scalar component is obtained by
taking the dot product of the vector scattering amplitude with a polarization vector

associated with the receiving transducer when it acts as a transmitter. We will describe this
component later.



Flaw Scattering

A(w) can be obtained from:

Numerical methods
Separation of variables
Boundary Elements (BEM)
Finite Elements (FEM)
Method of Optimal Truncation (MOOT)
T-matrix
Approximate Methods
Kirchhoff Approximation
Born Approximation

or A(w) can be found experimentally through
deconvolution: V(@)= E(w)A(w) — A(o)=
f f

measure  model, measure

If we solve a boundary value problem whose solution gives the surface fields needed to
define the scattering amplitude, that solution is normally obtained with numerical
methods, a number of which are shown above. Here, we will discuss only one of those
methods, the method of separation of variables. Alternatively, we can use approximate
methods. We will talk about two of those approximations — the Kirchhoff approximation

and the Born Approximation.

There is also an experimental way to obtain the scattering amplitude. If we measure the
voltage response of the flaw in a setup where we can model or measure all of the other
parts of the system, then we can obtain the scattering amplitude through deconvolution,

which is normally done, as shown above, with a Wiener filter.




Flaw Scattering

Kirchhoff Approximation for a Volumetric Flaw

reflected
e
incident g f wave(s)
wave n

e.

i ~

~

/

tangent
plane P~ ~

-~

on the "lit" surface: fields are those from plane waves
interacting with a plane surface

on the rest of the surface the fields are assumed to be zero

First, consider the Kirchhoff approximation. This is an approximation suitable for high
frequencies where the fields on the portion of the surface where the waves directly strike
the flaw (called the “lit” surface) are obtained by calculating the interaction of the incident
wave (taken to be a plane wave) with a planar surface whose unit normal coincides with
the normal to the surface. This plane wave interaction problem can be solved exactly so we
obtain the surface fields over the entire lit surface. Over the remaining of the surface the
fields are assumed to be identically zero.
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Flaw Scattering

It has been recently shown that the pulse-echo
scattering amplitude response, A(w), for a stress-free
flaw (void or crack) in an elastic solid is identical to
the scalar (fluid) scattering amplitude:

I (e, ) )

Slif

B
) 74%

Although in general the scattered response in an elastic solid is quite different from that of
a flaw in a fluid, it has been shown that for a stress-free flaw (crack or void) the pulse-echo
response for the scattering amplitude is the same for both the fluid and elastic problems
yielding an explicit integral over the lit surface that can be evaluated. This allows us to use
the simple fluid model even in the elastic wave case.

B=P,S
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Fl

aw Scattering-Spherical Void

For the pulse-echo response of a spherical
void of radius a, fluid model

20 |A(0)
a=1mm
¢ =5900m/s
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A(w)=A(e;—e,0)= _Taexp(—ika)[exp(—ika) —

0 25

10 15 20
frequency, MHz

30

sin (ka)
ka

|

Performing the scattering amplitude integral exactly for a spherical void, we can plot the
magnitude of the pulse-echo scattering amplitude response as a function of the frequency.
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Flaw Scattering-Spherical Void

Comparison with Kirchhoff solution with
exact separation of variables solution for the P-P scattering
amplitude of a void in an elastic solid (pulse-echo)

leading edge .
rey\\o‘nse ol exact solution (solid line)
®, HUH
©
3 081 \
N
0613 Kirchhoff solution
"creeping" wave n (dotted line)
0.2F
% 5 10 15 20 2 30

frequency, MHz

We can also calculate the P-P pulse echo scattering amplitude of the spherical void in an
elastic solid numerically (i.e. without approximation) and compare it with the Kirchhoff
approximation. We see the two responses have many similarities in terms of their general
amplitudes but the oscillations in the responses are different. This difference arises from
the fact that the oscillations in the Kirchhoff approximation come from the interference of a
large reflection from a point on the surface where the wave first strikes the void (called the
leading edge response) with the reflections from the remainder of the lit surface. In
contrast, the exact separation of variables solution oscillations come from an interference
of the leading edge response with a so-called creeping wave that travels around the flaw
and returns in a direction opposite to the incident wave direction in the pulse-echo setup.
The leading edge response is contained in both the separation of variables and Kirchhoff
approximation solutions but the creeping wave is not predicted by the Kirchhoff
approximation.
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Flaw Scattering-Spherical Void

Inverting the scattering amplitude (fluid model) predicted
by the Kirchhoff approximation into the
time domain

A(r)= A(ei;—ei,t)=_7a[5(t+2—a)—2iU(_—2a,o; Zﬂ

c a C

1 ¢ <t<t
Ult,t,;t)= : >
(1 : ) {0 otherwise

"1' " f
1t" surface A ( l‘)
response
<
4
t
leading edge 2a ‘
response = —— c

If we invert the Kirchhoff approximation solution into the time domain with an inverse
Fourier transform, we see a delta function leading edge response followed by a box-like
function over the lit surface (i.e. the front half of the sphere).



Flaw Scattering-Spherical Void

Exact solution
for a void in an

elastic solid (time 2
domain) 15
vs the Kirchhoff A

. . . creeping wave
approximation solution

time, usec

In contrast, we see here the separation of variables solution (plotted in blue) where the
leading edge delta function has been removed since it is identical with the delta function
obtained from the Kirchhoff approximation. By removing the delta function the remaining
waves frequency content is small at high frequencies so we easily perform an inverse FFT to
obtain the time-domain waveforms. In addition to the response over the lit surface (which
is not a constant) we see a later arriving wave which is the creeping wave. The Kirchhoff
approximation is shown as the dotted line response, which includes (symbolically) the delta
function .
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Flaw Scattering-Spherical Void

Although the Kirchhoff approximation is formally a high
frequency approximation ( ka >>1), numerical tests have
shown it capable of producing good agreement (<1 dB
difference) for the peak-to-peak time domain response of the
spherical void down to ka =1 provided the bandwidth is
sufficient

white: differences <1 dB 5
gray: >1 dB but < 1.5 dB
black: > 1.5 dB
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Comparisons of the Kirchhoff approximation with the separation of variables solution show
that the Kirchhoff approximation, while it is formally a high frequency approximation (ka
>>1) ,where k is the wave number and a is the flaw radius, actually models the amplitude of
the pulse-echo signal quite well down to ka =1 provided the bandwidth is sufficiently large
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Flaw Scattering-Inclusion

Leading Edge Response - General Convex Inclusion
(scattered mode same as incident mode)

tangent plane
/

AN
|

High frequency, stationary phase approximation

i> 0 =a
A(ei;es’a)) =R, R21R2

exp| —ikle, —e,

d]

Gaussian curvature of flaw surface at
Plane wave reflection coefficient stationary phase point

The leading edge response is a key part of the Kirchhoff approximation response and in fact
at high frequencies is part of the exact response of flaws that is often the dominant
response. Shown is the leading edge pitch-catch, same mode response of a general
complex-shaped convex flaw (void or inclusion). The leading edge response amplitude
depends on the plane wave reflection coefficient and the Gaussian curvature of the flaw at
a point on the surface called the specular point where the unit normal to the surface and
the incident and scattered wave directions are related through Snell’s law. For cases where
there are multiple specular points then all such points contribute to the response.
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Flaw Scattering-Inclusion

Leading Edge Response - General Convex Inclusion
(scattered mode same as incident mode)

tangent plane
/

X
|

A(ese,,t)=R, “RZIRz S(t+le,—e|d/c)

If we transform the leading edge response into the time domain, we see a delta function.



Flaw Scattering-Crack

Kirchhoff Approximation — Flat Elliptical Cracks

X3
\ >< es
X e
1

plane normal to e,
ei _ es

(¢

. |ei _es|

X4 .
A(ei;es) = Mel_n)‘]l (k|ei - es|re)

|ei - es|re

) 2
I”e— al eq-ll1 +a2 eq'u2

We can also obtain some solutions for cracks in the Kirchhoff approximation. Here is the
pitch-catch response of a flat elliptical crack (fluid model) which involves a Bessel function,
J1



Flaw Scattering-Crack

General pitch-catch crack response-circular crack
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The magnitude of the P-wave pulse-echo far-field scattering amplitude versus frequency for a I mm radius circular crack in steel
with an angle of incidence of from the crack normal.

If we plot the pitch-catch response in the frequency domain we see a series of decreasing
peaks and nulls in the response. These oscillations, we will see, arise because of the
existence of so-called flash-points in the time domain response.
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Flaw Scattering-Crack

Comparison of the Kirchoft approximation and MOOT for
a 0.381 mm radius circular crack at an incident angle of 45

degrees (pulse-echo)
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There is a more exact numerical approach to solving scattering problems called MOOT (for

the Method Of Optimal Truncation) that can be compared with the Kirchhoff
approximation result. The MOOT results show the overall behavior of the Kirchhoff
approximation result but contain additional oscillations that are due to the interference of

other waves that are present besides the flash points.



Flaw Scattering-Crack

When e, is parallel to the crack normal, n : l o
q

Aleyse,)= Leznm

Special case - pulse echo:

Aeime) =S5l

0 5 10 15 20 25 30
frequency, MHz
The magnitude of the P-wave pulse-echo far-field scattering amplitude versus frequency fora 1 mm
radius circular crack in steel at normal incidence.

In certain cases such as normal incidence (for pulse-echo) the Kirchhoff response is quite
different, becoming a linearly increasing function of frequency. We will see this arises
because the time-domain response becomes a doublet (derivative of a delta function) in
the time domain in this case.



Flaw Scattering-Crack

Comparison of the Kirchoft approximation and MOOT for
a 0.381 mm radius crack at normal incidence (pulse-echo)
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A MOQT solution also shows a general linearly increasing behavior but with some small
oscillations that decay at higher frequencies. However, a more careful numerical solution
revealed that the oscillations actually continue at these higher frequencies. This MOOT
solution did not keep a sufficient number of terms in this solution.
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Flaw Scattering-Crack

Inverting these results into the time domain

e; n=0
_aac(e n) d ] <le, —e,|
A(t)=A(ese.t)= 7le, —e_s_|2 r \/(|el. —er, /c)2 -1 L e
0 otherwise
Example: pulse-echo
flash points

\\TL\é

If we invert the crack Kirchhoff response into the time domain we find an antisymmetric
pair of pulses called flash points, that arise in pulse-echo, for example, when the incident
wave first touched the flaw edge and last touches the edge.




Flaw Scattering-Crack

At normal incidence, for pulse-echo

| —aya, d5(1)
Ale—e t)=_—4h% 29)
— (e;—e;t) e dr
Ale; s e )

In the pulse-echo response at normal incidence, we obtain instead a doublet response
(derivative of a delta function) in the time domain that has the linearly increasing frequency
response we saw previously.



Flaw Scattering-Crack

A planar crack is a very “specular” reflector

0 10 20 30 40 50 60 70 80 90

angle, degrees

At a given frequency the crack behaves as a very specular reflector, i.e. its response is large
in pulse-echo, only when the incident wave direction is normal to the face of the crack.
However, real crack responses come from a range of frequencies so that we will show
through some numerical studies that this behavior at a single frequency is misleading and
the Kirchhoff approximation can often be used at a wide range of angles.
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Flaw Scattering-Crack

Although the Kirchhoff approximation is formally a high
frequency approximation ( ka >>1), numerical tests have
shown it capable of producing good agreement (<1 dB
difference) for the peak-to-peak time domain response of a
circular crack at normal incidence down to ka =1.5 provided
the bandwidth is sufficient

white: differences <1 dB
gray: >1 dB but < 1.5 dB
black: > 1.5 dB
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bandwidth, %

For example, numerical studies have shown that the peak-to-peak amplitude of the crack
response is in good agreement with more exact solution to frequencies as low as ka = 1.5
provided the bandwidth is sufficient.
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Flaw Scattering-Crack

Comparison of synthesized waveforms scattered from a 0.381
mm radius crack using the Kirchhoff approximation and
MOOT using frequencies from 0-25 MHz approximately
(pulse echo)
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We will compare the Kirchhoff and MOOT ( considered here to be the “exact” solution)
results over a wide band of frequencies and invert these frequency domain results into the
time domain so we can examine the scattered waveforms. The MOOT results are left
unaltered from zero to 15 MHz, then are smoothly tapered to zero at 25 MHz with the filter
shown. This filter generates a wide band response with little ringing in the time domain
that can be compared with the Kirchhoff results.



Flaw Scattering-Crack

0-15 degrees from crack normal

0 — KR
20+ --- MOOT

This shows the Kirchhoff (blue) and MOOT pulse-echo results of a circular crack for angles
of 0, 5, 10, and 15 degrees from the normal, respectively (all plotted on the same axis).
Generally, we only see a bandlimited doublet response, which is predicted to have the
same form for both theories, although the MOOT also contains some small later arriving
waves.



Flaw Scattering-Crack

20-35 degrees from crack normal

This comparison is for angles of 20, 25 30 and 35 degrees from the crack normal, where we
see the flash points forming in the response but where now MOOT also predicts some
larger later arriving waves.



Flaw Scattering-Crack

40-55 degrees from crack normal

¥
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This continues the study for angles of 40, 45, 50, and 55 degrees from the normal. It is seen
the flash points remain the dominant part of the response and that the two theories agree
well for those flashpoints (although the second flashpoint is becoming somewhat smaller in
the MOOT response from that of the completely antisymmetrical Kirchhoff result) , but that
by 55 degrees the later arriving waves have became as large as the first flashpoint.
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Flaw Scattering-Crack

60-70 degrees from crack normal

— KR
MOOT
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At 60, 65 and 75 degrees the first flashpoint responses of the two theories still agree quite
well but the second flashpoint of the MOOT result is now much smaller than the first
flashpoint and the later arriving waves are now larger than the flashpoint responses.

32



Flaw Scattering-Crack

75-85 degrees from crack normal

75 --- MOOT

At the extreme angles of 75, 80, and 85 degrees the general behavior seen on the previous
slide continues. If we compare the amplitudes here with the normal incidence case we see
the amplitudes here are much smaller, so the crack is indeed rather specular in nature but
the Kirchhoff approximation remains valid over a wide range of angles and is not limited in
validity to near normal incidence.
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Flaw Scattering-Crack

Comparison of peak-to-peak values of MOOT and
Kirchhoff versus angle of incidence for the 0.381mm
radius crack (pulse-echo)

The arrow shows where agreement is within 1 dB

This slide shows that the peak-to-peak amplitudes of the Kirchhoff and MOOT solutions
agree, for these 0-25 MHz bandwidth responses out to about 60 degrees.



Flaw Scattering-Crack

Now consider the scattering amplitude with narrow band
Gaussian window

The central frequency is 10 MHz, and the bandwidth is 1 MHz
Radius of the crack a = 0.38 lmm
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In contrast, we now band limit the frequency domain responses to a very narrow
bandwidth, as shown.
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Flaw Scattering-Crack

the range of angles where the agreement is good is
significantly reduced
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In this narrow bandwidth case the range of angles of agreement is substantially smaller.
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Flaw Scattering-Crack

Now consider the scattering amplitude with wider band Gaussian
window

The central frequency is 10 MHz, and the bandwidth is 6 MHz
Radius of the crack a = 0.38 lmm
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Now, expand the bandwidth a bit.
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Flaw Scattering-Crack

The range of excellent agreement now is back to
angles as great as 45 degrees or more
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We see the range of angles with good agreement is now substantially larger.
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Flaw Scattering-Crack

Maximum incident angle where the peak-to-peak time
domain agreement between the Kirchhoff approximation
and the exact solution for a circular crack is less than 1 dB
for ka =5.0 (other ka values shown same trend).

max. incident angle, degrees

10 20 30 40 5 60 70 80 90

bandwidth, %

This curve summarizes the effects of bandwidth on the maximum angle at which the
Kirchhoff and MOOT results are in good agreement. We see that bandwidth indeed plays a
key role in where the Kirchhoff approximation is valid. This is important since in practice the
flash point signals are often used in NDE inspections for important tasks such as sizing a
crack.



Flaw Scattering-SDH

Kirchhoff approximation for pulse-echo scattering of a
side-drilled hole (incident direction in plane
perpendicular to the hole axis)

S

M

2b

Aef:—e/)= %[J1 (2k,b)-is, (2kﬂb)] . i(kyb)L
f ! w

Bessel function Struve function

In addition to spherical voids and circular or elliptical flat cracks, we can get an explicit
result for the pulse-echo scattering amplitude of a side-drilled hole (for either
incident/scattered P-waves or S-waves). This type of scatterer is often used in calibration
studies. We see the response is in terms of a Bessel function, J; , and a Struve function, S, .
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Flaw Scattering-SDH

Comparison with exact 2-D separation of variables
solution for P-waves (pulse-echo)
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The three-dimensional normalized pulse-echo P-wave scattering amplitude versus normalized wave number for

a side drilled hole in the Kirchhoff approximation (solid line) and from the exact two-dimensional separation of
variables solution (dashed line).

If we compare the Kirchhoff response (solid line) with an “exact” separation of variables
solution (dashed line) for P-waves we see good agreement but as in other cases there are
more oscillations in the exact result, likely coming from the interference of waves that are
not included in the Kirchhoff approximation.



Flaw Scattering-SDH

Comparison with exact 2-D separation of variables
solution for S-waves (pulse-echo )

1.1
'8
1 o
A
.\ DT
0.8 FxY "".
B RN IRY
o, [ RN Y]
.l.’"" [V )
06 SRV
v Yo v
g v
NN T
04 £y o‘|:||'
A YA YR
o v \S
0.2 v %
2
0 .
0 2 4 6 8 10

The three-dimensional normalized pulse-echo SV-wave scattering amplitude versus normalized wave number for
a side drilled hole in the Kirchhoff approximation (solid line) and from the exact two-dimensional separation of

variables solution (dashed line).

In contrast, for S-waves incident on the side-drilled hole there are more severe oscillations

in the separation of variables solution.
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Flaw Scattering

Kirchhoff approximation - Summary

For volumetric flaws -the Kirchhoff approximation
properly models the leading edge signal as long as
ka >1 approximately but does not model other
waves (creeping waves, etc.)

For cracks — the Kirchhoff approximation models
the flash point signals properly in pulse-echo as
long as ka > 1 approximately and the incident
angle is less than about 50 degrees for wide band
responses. For narrow band responses this angle is
considerably reduced to as little as 15-20 degrees.

In summary, the Kirchhoff approximation , while it does not capture all the aspects of the
flaw response, it does model very well the leading edge signals of volumetric flaws and the
flashpoint signals of cracks and those signals are often the dominant signals seen and used
in NDE tests. In fact, we have shown that it is the leading edge responses of volumetric
flaws (and the flashpoints, for cracks) that are primarily responsible for generating the flaw
images seen in popular flaw imaging methods such as SAFT (synthetic aperture focusing
technique) and Full-Matrix Capture imaging.
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Flaw Scattering -Inclusion

The Born Approximation

The Born approximation assumes that the material of
an inclusion differs little from the host material so that
to first order the incident wave passes through the
inclusion unchanged (weak scattering, low frequency
approximation)

incident
wave

Another approximation that has been used is the Born approximation that assumes the
flaw is nearly the same as the host material so that to first order the incident wave is
unchanged as it passes through the flaw. It is a weak scattering, low frequency
approximation.



Flaw Scattering -Inclusion

The Born approximation generally is developed from a
volume integral expression for the scattering amplitude

density difference difference in elastic constants

R

A(e.ﬂ;e”)— —d I{Apa)zﬂq-rikaeijqum/.a’”}exp(—ikﬂx-ef)dV(x)
P ! ox,

i s )T 2
drpc, 7

fields in the flaw replaced by incident fields

1/7 — izincident aﬁm _ aﬁ::midem
q q -
8xj axj

The Born approximation is based on a volume integral representation of the scattering
amplitude and simply replaces the fields in that volume integral by the incident wave fields,
leading to an explicit representation for the scattering amplitude.



Flaw Scattering -Inclusion

For a spherical inclusion in pulse-echo

l spherical Bessel function

Ji\2k,b
A(ef ¢! ) = ~4kib’F = ﬁkﬂz |

where Follbp, Ac
20 p ¢

.

relative density relative wave speed
difference difference

For the pulse-echo response of a spherical inclusion the response is in terms of a spherical

Bessel function, j, .
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Flaw Scattering -Inclusion

Corresponding time domain impulse response for a
spherical inclusion (pulse-echo)

front surface back surface

response response
2 »
C, C,

If one inverts the spherical inclusion response into the time domain one finds delta
function front and back surface responses and a constant response throughout the flaw in
between the front and back surfaces.
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Flaw Scattering -Inclusion

Comparison with "exact" separation of variables solution
for the pulse-echo response of a spherical inclusion by
synthesizing a time-domain response from frequencies
ranging from 0-20 MHz approximately for a 1 mm

radius inclusion (10 % differences in properties)
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The time domain pulse-echo P-wave response of a 1 mm radius spherical inclusion in steel where the density

and compressional wave speed are both ten percent higher than the host steel. Solid line:
Born approximation, dashed line: separation of variables solution.

Here is a comparison of the Born approximation with an “exact” separation of variables
solution for a weakly scattering spherical inclusion, showing the leading delta function
responses are nearly identical and the back surface responses are similar but somewhat
displaced. In addition, there are other responses of later arriving waves in the “exact”
solution not predicted by the Born approximation.
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Flaw Scattering -Inclusion

Comparison with "exact" separation of variables solution
for the pulse-echo response of a spherical inclusion by
synthesizing a time-domain response from frequencies
ranging from 0-20 MHz approximately for a 1 mm
radius inclusion (50 % differences in properties)
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The time domain pulse-echo P-wave response of a I mm radius spherical inclusion in steel where the density
and compressional wave speed are both fifty percent higher than the host steel.Solid line: Born approximation,
dashed line: separation of variables solution.

For a spherical inclusion with properties significantly different from that of the host the
front surface signals are very similar but the back surface responses are significantly
different in amplitude and time of arrival and there are again other significant waves
present not predicted by the Born approximation.
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Flaw Scattering -Inclusion

Doubly Distorted Born Approximation

2kﬂb )

P S

replace wave speeds of host material by that of the
flaw in the Born approximation
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for the pulse-echo response of a spherical

inclusion
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Since most real flaws found in NDE inspections are not weak scatterers, it would be nice to
be able to “fix” the time of arrival and amplitude errors we have just seen. An ad-hoc fix
called the doubly distorted Born approximation was developed that simply replaces the
wave speed in the F function and the spherical Bessel function by the flaw wave speed
rather than the surrounding host wave speed found in the Born approximation. This makes
sense since the wave propagating in the flaw travels at the flaw wave speed not that of the

host.
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Flaw Scattering -Inclusion

Front surface amplitude response is improved, and
relative time of arrival of back surface response is
correct, but there is an error in absolute time of
arrivals (50% differences in properties)
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The time domain pulse-echo P-wave response of a I mm radius spherical inclusion in steel where the density and
compressional wave speed are both fifty percent higher than the host steel. Solid line: Doubly Distorted Born
approximation, dashed line: separation of variables solution.

Comparisons of the doubly distorted Born approximation with the separation of variables
solution for a strongly scattering spherical inclusion shows that the doubly distorted Born
approximation does now get the time separation between the front and back signals
correct but the amplitudes of both signals are still different and the front and back signals
do not have the correct times of arrival.
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Flaw Scattering -Inclusion

Why is the front surface response amplitude improved
by the Doubly Distorted Born Approximation ?
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Answer: because  F = RS (plane wave reflection coefficient)

The amplitude of the front response in the doubly distorted Born approximation is closer to
the exact solution than the ordinary Born approximation. The modified F function we see is
closer to the exact plane wave reflection coefficient for the flaw so it seems likely that
better agreement is the reason for the improvement.
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Flaw Scattering -Inclusion

This suggests we apply a phase correction to the doubly
distorted Born approximation and replace /' by RS’
resulting in the modified Born approximation (MBA)

for the pulse-echo response of a spherical
inclusion

Ji (2k,.ﬂb)

2k, b

A(ef’;—ef’ )MDZ = —4k; b’ RS’ exp[Zikﬂ,b(l —c,plcy )J

|

phase correction

Thus, instead of using the doubly distorted Born approximation, it makes sense instead to
replace the F function by the plane wave reflection coefficient and add a phase term to

account for the time of arrival errors. This simple modification we have called the modified
Born approximation.



Flaw Scattering -Inclusion

The MBA
(50 % differences in properties)
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The time domain pulse-echo P-wave response of a 1 mm radius spherical inclusion in steel where the density and compressional wave
speed are both fifty percent higher than the host steel.Solid line: MBA approximation, dashed line: separation of variables solution.

Here is now a comparison of the modified Born approximation with the separation of
variables solution for a strongly scattering inclusion. We see the font surface responses now
match almost perfectly and the time of arrivals of both the front and back surfaces are now
correct also. The amplitudes of the back surface responses are still different as the Born
approximation always assumes the front and back surface responses are identical and this
is simply not the case in practice except in the weakly scattering limit.
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Flaw Scattering -Inclusion

The MBA
(100 % differences in properties)
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The time domain pulse-echo P-wave response of a 1 mm radius spherical inclusion in steel where
the density and compressional wave speed are both one hundred percent higher than the host steel.
Solid line: MBA approximation, dashed line: separation of variables solution.

Even at 100 per cent differences between the flaw and host properties the modified Born
approximation continues to get at least the front surface signal correct. Note the many late
arriving signals in the exact response. There are many other waves present that travel both
in the inclusion and around it that are not accounted by the Born approximation.
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Flaw Scattering

The Method of Separation of Variables

The sphere and the cylinder are the only two geometries

where we can obtain exact separation of variables solutions for
elastic wave scattering problems. These are commonly used as
"exact" solutions to test more approximate theories and
numerical methods.

The method of separation of variables gives us an “exact” method to calculate scattering
properties of spherical and cylindrical flaws so it is an important tool for making
comparisons with approximate theories, as we have shown.
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Flaw Scattering-Void

Example 1: pulse-echo P-wave scattering of a spherical void

E, =(2n+1) {[ —n= (k27 12) ], (K, )+ 2k, i, (K, b)}
E,=(2n+1) { n— 1]n(kpb) kb],ﬂ( )}

Ey = =n— (k0" 12) |1 (k,b)+ 2k 6L, (k,b)

=(n-

A" (kb) Je,bh") (,b)

PP

Ey ==n(n+1)[ (n=1)A" (kb) kA (k) ]
Ey == n =1=(k207 12) | (k,b) ~ k bh), (k,b)

n

The separation of variables solution for the pulse-echo P-wave response for a spherical void
is shown here. It involves an infinite sum of special function terms which must be truncated
for numerical purposes. Generally more terms are needed at the higher frequencies. It is
not difficult to calculate on the order of 100 terms in the sum and this typically is enough to
cover the frequencies found in most NDE tests.



Flaw Scattering-Void

The normalized P-wave pulse-echo scattering amplitude 2A/b
for a spherical void of radius b.
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Here is the pulse echo response of a spherical void as calculated with the method of
separation of variables. It looks similar to the Kirchhoff approximation response. At high
frequencies the amplitudes agree but the oscillations are different, especially at low
frequencies.



Flaw Scattering-Void

Using this separation of variables solutions at many frequencies
to synthesize a P-wave impulse time domain solution (pulse-
echo)
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The time-domain pulse-echo P-wave response of a 0.5 mm radius spherical void in steel ( ¢, = 5900 m/s, ¢, = 3200 m/sec)

obtained by applying a low-pass cosine-squared windowing filter between 10 and 20 MHz to the separation
of variables solution and then inverting the result into the time domain with the inverse Fourier transform.

If we use that frequency domain response and calculate the time domain response we see
the leading edge response and a response over the lit surface which is not constant as
found in the Kirchhoff approximation. There also is a later arriving creeping wave which has
traveled around the sphere and is not predicted by The Kirchhoff approximation.
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Flaw Scattering-Void

Example 2: pulse-echo SV-wave scattering of a spherical void
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Here is the separation of variables pulse-echo solution for an SV-wave incident on a

spherical void.
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Flaw Scattering-Void

The SV-wave pulse-echo scattering amplitude

0.7

0.6

0.5

0.4

amplitude

0.3

0.2

0.1

0 . . . . . .
0 2 4 6 8 10 12 14 16 18 20
frequency, MHz

The magnitude of the pulse-echo SV-wave response, , versus frequency for a 0.5 mm radius spherical void in steel
( ¢,=5900 m/s, c =3200 m/sec) as calculated by the method of separation of variables

In the frequency domain there now are considerably more oscillations present, suggesting
the presence of large, later arriving waves.
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Flaw Scattering-Void

Using this separation of variables solutions at many frequencies
to synthesize an SV-wave impulse time domain solution (pulse-
echo)

6

amplitude

-1 -0.5 0 05 1 1.5

time, usec

The time domain pulse-echo SV-wave response for the same void considered in the P-wave case by applying a low-pass cosine-
squared windowing filter between 10 and 20 MHz to the separation of variables solution and then inverting the result into the time
domain with the inverse Fourier transform.

Transforming the response into the time domain we see the leading edge response again
but now there is a very strong later arriving creeping wave.



Flaw Scattering- SDH

Example 3: pulse-echo P-wave scattering of a cylindrical void

Aol 1S g s Anle)=[2E] 22(0)

L T & k L

a2
{1 n=0
50?1 =

0 otherwise

C,(f) (x) = (n2 +n7(ksb)z/2)H,(f) (x)f(ZnH,(f) (x)fo,Si)l (x))

DI (x) = (s 1)) () (2 1) ()= 1 ()

We can also write down a separation of variables solution for a P-wave incident on a
cylindrical void. This is a 2-D scatterer where we can define its scattering in terms of a 3-D
scattering amplitude or a 2-D scattering amplitude, which are simply related.



Flaw Scattering-SDH

Recall, the scattering amplitude for the pulse-echo P-wave
case was:

09
0.8
0.7
0.6
|4,/ 2%°
04
03 1
0.2 r
011

This gives the response in the frequency domain we saw previously and which was
generally in good agreement with the Kirchhoff approximation.
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Flaw Scattering- SDH

Using this separation of variables solutions at many frequencies
to synthesize a P-wave impulse time domain solution (pulse-
echo)

creeping wave

amplitude
o

-1 -0.5 0 0.5 1 1.5

time, usec

The time-domain pulse-echo P-wave response of a 0.5 mm radius cylindrical void in steel (c, = 5900 m/s, ¢, =3200 m/sec) obtained by
applying a low-pass cosine-squared windowing filter between 10 and 20 MHz to the separation of variables solution and then inverting the
result into the time domain with the inverse Fourier transform.

If we invert the result into the time domain we see the leading edge response and a weak
creeping wave.

65



Flaw Scattering - SDH

Example 4: pulse-echo SV-wave scattering of a cylindrical void

4y (e;va_e?") Z n
=— 2-90, 1) G
L 20 ;( On )( ) n
{1 n=0
S = R
0 otherwise

If instead we examine the pulse-echo SV-wave response of the cylindrical void we also can
write down the separation of variables solution.



Flaw Scattering -SDH

Again, the scattering amplitude for the pulse-echo SV-
wave case was:

08
0.6
|4,p]/ L

04r

021

Recall, this again generally agreed with the Kirchhoff approximation but now there were
deeper oscillations in the separation of variables solution.
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Flaw Scattering - SDH

Using this separation of variables solutions at many frequencies

to synthesize an SV-wave impulse time domain solution
(pulse-echo)

creeping wave

amplitude

-40 '
-1 -0.5 0

0.5 1 1.5
time, usec
The time-domain pulse-echo SV-wave response of a 0.5 mm radius cylindrical void in steel (¢, =5900 m/s, ¢, = 3200 m/sec)

obtained by applying a low-pass cosine-squared windowing filter between 10 and 20 MHz to the separation of variables solution and
then inverting the result into the time domain with the inverse Fourier transform.

Those deeper oscillations are present because the creeping wave response is larger than in
the P-wave case.
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Flaw Scattering - SDH

Experimentally determined scattering amplitude by
deconvolution (side-drilled hole)

We mentioned earlier that another way to obtain scattering amplitudes is experimentally.
For small flaws we can write the received voltage as a product of the scattering amplitude
by a factor G which can be obtained through models and measurements. We will not give
the details for obtaining G here but we show some of the general parts of that factor here,
including the system function and an integral over the length, L, of the inclusion of the
fields incident on the flaw, which we can obtain with beam models. Through deconvolution,
then we can obtain the scattering amplitude.
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Flaw Scattering -SDH

AL

frequency, MHz

Here is the separation of variables pulse-echo P-wave scattering amplitude response for the
cylindrical void and the corresponding scattering amplitude determined experimentally
over the bandwidth of a 5 MHz transducer. This comparison shows that one of the
challenges of NDE testing is that inherently we are always seeing flaw responses over a
limited range of frequencies so that limitation often makes it difficult to use features of the
response predicted by models.
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Ultrasonic System Measurement Model - |

We now want to combine all the elements of an ultrasonic flaw measurement together and
generate a complete ultrasonic measurement model.



Learning Objectives

Use of a simple fluid model to obtain a complete
measurement model

extension to a fluid-solid model

Here, we will use a simple fluid model to develop the ultrasonic measurement model but
we will show that this simple model captures all the elements of an immersion NDE
measurement.



Ultrasonic System Model — Single Fluid

V(@)

ulser .
p receiver

S
transducer > Tt Vi

r
transducer

Here is the configuration we will examine: two transducers examining a scatterer (i.e.
“flaw”) in a fluid in a pitch-catch measurement setup.



Ultrasonic System Model — Single Fluid

Consider the sound generation process:
ALAAAL

1

V_(g))

pulser

piston \>> Vo(®)
transducer \ ’
(@)= peSivy(0) =1, (), (o)

S, ... area of the transmitting transducer

t;(w) transfer function for pulser, cabling, transducer

We have shown previously that we can write the compressive force generated by the
sending piston transducer as a sound generation transfer function multiplied by the
Thevenin equivalent voltage put out by the pulser. We saw how we could measure all the
elements contained in the sound generation function (pulser impedance, cabling,
transducer impedance and sensitivity).



Ultrasonic System Model — Single Fluid

Vo) — AALAA

pulser
transducer >,

Pinc(a))

/< €io
Zj flaw éX>

S

In the paraxial approximation, the beam produces a
quasi-plane wave incident on the flaw given by:

p(xs9a)) = Bnc eXp(ikeiO ’ Xs)

In the paraxial approximation the beam of sound produced by the transducer generates a
guasi-plane wave incident on the flaw.



Ultrasonic System Model — Single Fluid

Si / Py, (®) p(x,,)=P, exp(ike, x,)
! P,. = pcv, (@) C, (w)exp(ikz,)
X A
St
diffraction correction
Note: since (deviation from a plane wave)
p(x,.0)= 2% | P 45— pe,C () exp (ikz,)
272— S, i
_—ik . exp (ikr,))
Ct (a)) = g@Xp(-lkZi ) J TdS

S

This quasi plane wave can be written in terms of plane wave traveling to the flaw multiplied
by a diffraction correction terms. If we use, for example, a Rayleigh Sommerfeld
representation of the beam then we can write that diffraction correction explicitly.



ik exp (—ikz,) I exp(ikri) ds

4 s s

t

To calculate the diffraction
coefficient, however, we can
use a multi-Gaussian beam
model:

In practice, however, it is easier to use a multi-Gaussian beam model to write the
diffraction correction in more explicit terms.



Ultrasonic System Model — Single Fluid

For the waves scattered from the flaw

_AAAAL
Pin7<
e.

0

in the far field

inc

Aot o i
;

s

p:catt (X,a)) — P

A(e,se,) plane wave far-field scattering amplitude

The scattered wave from the incident quasi-plane wave can be written in terms of the far
field scattering amplitude.



Ultrasonic System Model — Single Fluid

Now, consider the scattered waves at the receiving
transducer:
ALALAAL

receiving
transducer

Blocked force:

Fy(0)=2[ p*ds =2p, | A(%,ey)% s
s, 5

s

The scattered waves ( which are spreading spherical waves) arrive at the receiving
transducer. If we assume plane wave interactions at the receiving transducer, we can just

double the scattered pressure field and compute the blocked force at the receiving
transducer.



Ultrasonic System Model — Single Fluid

receiving
transducer

io

In the paraxial approximation

(on reception) A(e, e )= A(e,.e,)

and we have  F,(w)=2P, A(e,.e

inc i0% Vso

Normally, the transducer is far enough from the flaw that the waves arriving are all
traveling in essentially a single scattered direction so that the variation of the scattering
amplitude over the face of the transducer can be ignored and the scattering amplitude
taken out of the integral over the receiving transducer face.



Ultrasonic System Model — Single Fluid

receiving
transducer

ik
blocked force FB (a)) - 2PincA (eio’eso ) I exp,(,-l : ) das
Sr

s

If receiving transducer were acting as a transmitter it would
produce a pressure field given by

—i exp (ikr, .
p(x,,0)= l;’iv" j pi “)dS = pev,C, (@) exp (ikz, )
S, s

Thus, the blocked force can be written as a product of the incident amplitude on the flaw
times the far field scattering amplitude times a term which is again related to the
diffraction correction for the receiving transducer when it is acting as a transmitter.



Ultrasonic System Model — Single Fluid

and

becomes

receiving
transducer

S
Il

Sj exp (ikr, ) 2_’; (@)exp(ikz,)

¥ -1

Fy(®)=2P, A(e,,e )IMdS

inc io? ™~ so P
S, s

—P_A(e, e, )C, (a))[%}exp(ikzx)

Collecting all these results we have an explicit expression for the blocked force.
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Ultrasonic System Model — Single Fluid

ALALAAL receiving
transducer

—ik . exp (ikr,)
C (w)=—-exp(—ikz,) | ——=dS
()= ew(cike) [ 7]
Again, we could compute this diffraction correction with
our multi-Gaussian beam model

o) = S A, o ikp? 1 [ql(O)Jn :—ika2/2
T e Rt e

Again it is easier to compute this diffraction correction with a multi-Gaussian beam model.
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Ultrasonic System Model — Single Fluid

Sound reception process: receiver
VR
ALAAAL
transducer

tr (a)) transfer function for transducer, cabling, receiver

We can relate the received voltage to the blocked force through a sound reception transfer
function which accounts for the transducer, cabling and receiver.
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Ultrasonic System Model — Single Fluid

V(@)

pulser receiver

transducer >

P, = th (w)exp(ikz,)

t

F(0) = RuA(e,.e, ) 0)] 2 oxp(tz)

Vi(o)=t (@) Fy (@) Combining all these relations, we find:

We now have terms in our measurement model, as shown, which consider the processes
between the pulser and the flaw, the flaw and the receiving transducer, and from the
receiving transducer to the measured received voltage.



Ultrasonic System Model — Single Fluid

Vl(m), N AAAAL
pulser receiver
S Vi
transducer > Tt
’ Sr
z; transducer

Combining all the terms we have an (almost) complete measurement model. We say
almost complete since we still need to account for wave attenuation, which we will do later.
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Ultrasonic System Model — Single Fluid

Vi(w)_+ ALALAAL
pulser receiver
S, Vi
transducer > S |,
’ r
7. transducer

Ve(@)=s5(w)C, (@)exp(ikz,)C, (w)exp(ikz,) A(e,.e,, ){ 4z }

—ikS,

S (a)) ... system function (pulser/receiver, cabling, transducer)

There are, of course, many measurements needed to obtain all the terms in the
measurement model. But this burden can be greatly reduced by replacing many terms in

the model by a single system function which can be measured in a calibration setup as we
have discussed.
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Ultrasonic System Model-Single Fluid

received
voltage

Vi(@)=s(@)C, (w)exp(ikz,)C, (w)exp(ikz,) A(e, e, w){_j]fst }

1 [ T x

pulser, receiver beam propagation and
cabling,transducers diffraction effects going flaw area of
from the transmitting scattering transmitter

transducer to the flaw
and from the flaw to the
receiving transducer

When attenuation of the fluid is important, we need to also
include terms exp [—a(a})zl_ —a(a))zs}

a(w) ... frequency dependent attenuation

Thus, the measurement model is a product of the system function (which can be
measured), a set of terms involving beam propagation and diffraction effects for the
sending and receiving transducers (which can be modeled with beam models), and the far
field scattering amplitude, which characterizes the flaw response. Finally, there is a
remaining term involving a set of constants. To complete this model we can also include
wave attenuation terms involving propagation from the sending transducer to the flaw and
from the flaw to the receiving transducer.
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Ultrasonic System Model-Single Fluid

For pitch-catch
/o (0)=5(0)7 (0)7 (o) e, i6,.0) 7
—i

t

=~
E
I
o
E
o
>
S
0
Q
N
SN—
o
Il
=

For pulse-echo V,(@)=V,(@)=V ()

V(@)= s5(0)[7 (o) | A(efo;ew’a’){—jkst }

Here we write the pitch-catch measurement model results in a more abbreviated fashion
that shows the fields for the sending and receiving transducers explicitly and how the
model reduces to a simpler form for the case of a pulse-echo measurement (sending and

receiving transducers are identical)



Thompson-Gray Measurement Model — Fluid-Solid (Pulse-Echo)

AAAAL
fluid

flaw )
solid

%
Prs €y =€)y O Cyy

P-wave or S-wave

o) =s(o)[ 7 )] (o) 252

—ik,S, pic,

dgw U A(w)= [A(e;;—e; ).(—dg)]

(r=pors)

We have used a simple fluid model, but if we examine, for example the pulse-echo
response of flaw in an actual ultrasonic measurement, a measurement model will be
almost identical in form except we can look at P-wave or S-wave responses and the scalar
scattering amplitude is a particular component of the vector scattering amplitude that
depends on the polarization of the incident waves. The remaining constant coefficient is
also slightly different. This measurement model was first obtained in a very similar form by
Bruce Thompson and Tim Gray so it is called the Thompson-Gray measurement model.
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Thompson-Gray Measurement Model — Fluid-Solid (Pulse-Echo)

n(w)=s@®[ﬁ(”ﬂzA(”ﬁ}JEL_EZQ}

—tk.,S, pic,

(r=pors)
V(@)= P(0)M ()T (@)C(w)

P() :exp(ikplzl +ikr2zz) ... propagation

M(w)= exp(—aplz1 - a,,zz) ... attenuation
T(w)=T,, ...plane wave transmission
coefficient (velocity/velocity)

C(w) ... diffraction coefficient

Here is the Thompson-Gray model with the velocity field expressed more explicitly in terms
of propagation, attenuation, transmission, and diffraction terms.
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Ultrasonic System Measurement Model - 11

This will be an overview of the various ultrasonic measurement models that have been
developed for NDE tests.



Learning Objectives

Definition of a Measurement Model

Three Types of Measurement Models
Auld Model
Thompson-Gray
Model for 2D scatterers

Verifying the Modeling Assumptions
and Measurements Needed

We will define what an ultrasonic measurement model is and give examples of three types
of models that have been developed. We will also discuss the steps we can take to verify
the various assumptions made and summarize the measurements needed.



Ultrasonic Measurement Models

What is an Ultrasonic Measurement Model? A model that
expresses the output voltage, v,(¢) ,received from a flaw in a
ultrasonic testing configuration in a form that explicitly gives the
modeling or measurement parameters needed to obtain that
voltage (immersion shown only as a specific example)

Pulser Receiver
AAAN ANANAN
B m—{ -
m —> — [H0
component

being inspected S;  surface of the flaw which has
an outward normal, n

All the measurement models discussed use V,(w), the frequency components of vg(t)
FFT

Ve(@) vy (t)

An ultrasonic measurement model must predict the measured time domain output voltage
in a flaw measurement. Our measurement models will all be constructed in the frequency
domain but an inverse FFT will yield the desired output voltage signal.



Ultrasonic Measurement Models

Electroacoustic Measurement Model - 2002

Dang, C. J., Schmerr, L.W., and A. Sedov," Modeling and measuring all the elements of an ultrasonic nondestructive
evaluation system. |: Modeling Foundations," Research in Nondestructive Evaluation, 14, 141- 176, 2002.

Ve(@)=t; (o)t (0)V, (o), (o)

driving voltage = (a)) L (a)) output voltage

pulser cabling sending Fy (o)

receiving ; i
B B cabling receiver
transducer 7, (@) = - =7? transducer

; (@) ‘

propagation,
to(@) flaw scattering tp (o)

We have seen how the pulser/receiver, cabling, and transducer(s) can all be described in
terms of components that can either be modeled or measured. Those aspects of the
ultrasonic system can all be combined into a single system function, which we have seen
can be measured in a calibration experiment. The remaining part of the system, the
acoustic/elastic transfer function, t, , involves propagation and scattering of the waves
present so it is a key element in the measurement model that must be obtained with
models. A model of an ultrasonic system with all the components shown above described
completely was first obtained by Dang et. al. in 2002 and called an electroacoustic
measurement model



Ultrasonic Measurement Models

Auld Electromechanical Reciprocity Relation

Auld (1979) , using reciprocity relations and the solutions to two specific
problems, developed an explicit relation that has been widely used

B. A. Auld, Wave Motion,, Vol. 1, (1979), pp. 3-10.

The two problems:

problem (1) problem (2)
AAAN AAAA AAAA AAAN
- ‘ Q —
S¢
transducer A firing, transducer B firing,
flaw present flaw absent

In 1979 Bert Auld used reciprocity relations and the solution to two specific problems:
problem (1), where the flaw was present in the component being inspected (i.e. the
problem we want to solve, and problem (2), the same configuration except where the flaw
was absent. With these solutions Auld was able to generate a general model of the
ultrasonic measurement process. Auld used a contact testing case, rather than the
immersion case shown here, in his relations but that difference is not significant.



Ultrasonic Measurement Models

Auld Electromechanical Reciprocity Relation

AN ANAN r

P

S¢

6T =L [ (03 -¢.v®) a5

e
oI'... change in cable transmission coefficient due to the presence of the flaw
P... power delivered by the transducer
t(l), V(l) stress vector and velocity for problem (1) : A firing and flaw present

¢ ) stress vector and velocity for problem (2): B firing and flaw absent

E}

Auld showed that a change in the signal carried by the cable at the receiver could be
expressed in terms of an integral over the flaw surface of the fields in problems (1) and (2).



Ultrasonic Measurement Models

Auld Electromechanical Reciprocity Relation

AANN AANN

/ r
()
S,
sT=—L [ (£ v =t v) ag
4Py

Auld's assumptions:

1) linear, reciprocal electromechanical system (harmonic disturbances)
2) fundamental TEM mode propagating in the cable

Since we expect Yz (@) ST (@)  Auld's relation "essentially” is

an ultrasonic measurement model

Since we expect the change in signal in Auld’s model to be directly related to the received
voltage signal, Auld’s relation is “essentially” a measurement model. It is a very general
model since it only assumes that the measurement system is linear and reciprocal and that
the electrical disturbances in the cable are propagating TEM mode waves, which are
typically the fundamental waves present in coaxial cables.



Ultrasonic Measurement Models

An Alternative Reciprocity Relation

In 1998, Dang, Schmerr, and Sedov obtained a completely explicit model
relationship using a purely mechanical reciprocity relationship plus
several other relatively weak assumptions

problem (1) problem (2)
AAAN AAAN ANAA AAAN
o B
v v
S¢
V(o) s(@) [ (€030 - 40) gs

7 (o)) (o)D) (o)

In 1998 Dang et. al. used purely mechanical reciprocity relations to characterize the
acoustic/elastic transfer function and arrive at a form that is similar to the ones we have
been discussing where the system function appears directly. This is now indeed an
ultrasonic measurement model of the Auld form which explicitly expresses the output
voltage in terms of the system parameters. Henceforth, we will call this model Auld’s
measurement model in recognition of his foundational contributions.



Ultrasonic Measurement Models

S\
v (0)=— (1)( ) — N RN
ZH (o)) (@)v, (@)5,
s(a)) ... system function (pulser, cabling, receiver)
vS) (a)) ... average velocity over the face of transducer A in problem (1)
Vj(;) (a)) ... average velocity over the face of transducer B in problem (2)
ZrA (a)) ... radiation impedance of transducer A in problem (1)

Here are the basic elements appearing in this form of Auld’s measurement model



Ultrasonic Measurement Models

Auld’'s Measurement Model

s(o) ) @) _ ), 0
v, = t. -t ds
«(@) ZA(a))vS)(a))vgz)(a))g[( V)

r

assumptions used to obtain this explicit model

1) linear, reciprocal acoustic and elastic media (harmonic disturbances)

Like Auld’s original model, this form relies on very few assumptions. First, there is the
assumption that the waves in the system satisfy acoustic/elastic reciprocity.



Ultrasonic Measurement Models

2) we also assumed the output velocity for the transducers can be written
in a separable form. For transducer A, for example

AAAN

Jo e density, wave speed of the fluid

W (x,0) =) (o) f(x)

vg) (a)) average velocity

Here, the "forces" are defined in terms of weighted pressure integrals
over the transducer face, using the same functions used to describe
the velocity. For example, for transducer A

F(0)= [ p(x0) £ (x)a5(x)

For a piston transducer f =1

Second, the velocity on the face of the transducers was assumed to be in a separable form
where there is a spatial variation terms and a frequency dependent term . This form is
satisfied, for example, by a piston transducer, which is a commonly used transducer model.



These two assumptions lead to an explicit
expression for the acoustic/elastic transfer function:

ANANN AAAN
—
¢ B
Transmitted Blocked
force
force
Ly (a)) — Fy (60) _ 1 J’ (t(l) VO @ V(l)) S

With these two assumptions we can obtain an explicit expression for the acoustic/elastic
transfer function in terms of an integral over the flaw surface of the fields appearing in
problems (1) and (2).
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Ultrasonic Measurement Models

3) we also assume that the pulser, receiver, transducers and cabling
can be replaced by equivalent linear, time-shift invariant (LTI) systems,
i.e.

I

V(@) =ty (@) F, (@)

.
=
l
Q
=
~
S

Then, we can write the reciprocity relationship in the form

0)=53 <(Z)) E@)Véﬁa))) [(0 =) as

7

or, finally

We also assume that all the other parts of the system can be represented as LTI systems
and that we can lump all those parts into a system function.



Ultrasonic Measurement Models

A General Ultrasonic Measurement Model

s(@) 1) @) (@) o)
V(@)= 0.y _ (@ .y0) gs
R(O)) Z;q(w)vs)(m)vgz)(m)s_[( v v )

assumptions

1) linear, reciprocal acoustic and elastic media (harmonic disturbances)
2) the output velocity for the transducers can be written in a separable
form

3) the pulser, receiver, transducers and cabling can be replaced by
equivalent linear, time-shift invariant (LTI) systems.

This, then is a general ultrasonic measurement model based on very few assumptions.

14



Ultrasonic Measurement Models

4) if we also assume that the transducers behave as piston radiators at
high frequency then

Z4 (@)= pesS, crc:ﬂ

and our explicit model becomes, finally

The radiation impedance can normally be taken as its high frequency value, yielding the
model shown. This model can be used in essentially the same form for contact testing as
well as immersion testing and can include other setups such as angle beam transducers.



Ultrasonic Measurement Models

5) now, assume the incident waves are quasi-plane waves
in the vicinity of the flaw, e.g.
(1)

vl = yt (x,,%,,%;,@) dﬁl) exp(ikze(l) -x)

inc

vﬁz) =y (x,,%,,%;,@) dﬁz) exp (ikze(z) - x)

SEA

and also define normalized amplitudes of these quasi-plane waves as

[;'(1)= V(l)
W (@)
[}(2): V(z)
2
W (o)

Now, let’s assume that the waves incident on the flaw can be describes as quasi-plane
waves and normalize the velocity wavefields of these waves by the velocities on the faces
of the transducers. Note that we can model these normalized fields with ultrasonic beam
models without having to know the amplitudes of the actual velocities present on the

transducer faces.



Ultrasonic Measurement Models

Then the form of the measurement model becomes

A47p,c 0P 450 20
V()= | [pip@ (30, 20) as
R(a)) S(a)){_ikz plcl‘SA:|S, (vj ' )

velocity fields scattered wave fields

in problems (1),(2)  from the flaw
due to unit average

velocities on the

transducer faces

Then the form of the measurement model becomes as shown here, where the velocity
fields and scattered wave terms all can be described directly with models.



The flaw scattering term is rather complex:

A(ﬁ,(.l),f,.,(-l))=4”; Q(T,f d? - C,,df" (61(2)/02)‘751))nj exp (ke -x)
2C)

1 1
T( ) v( ) stresses and velocity components in problem (1)

ijrj
e(,z), d? components of the incident wave direction and polarization
;o in problem (2)
nj components of the unit outward normal to the flaw surface
Cijkl elastic constants tensor

MOREI)
the normalized fields V; »%;  are defined as velocity and stress in
problem (1) due to an incident wave of unit displacement amplitude

=
Vi o +
14
_1 \
Ly _—ior) =y i
T. = U ’ /
y V(‘)

The scattering terms are rather complex functions of the fields on the surface of the flaw.
They are computed here as the scattered waves due to an incident wave of unit
displacement amplitude so they can be calculated independent of the actual amplitudes of
the incident waves, which are contained in the normalized velocity terms. The incident
wave is taken to be of unit displacement amplitude since most plane wave scattering
amplitudes in elastic solids are defined for such an incident wave.
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Ultrasonic Measurement Models
3-D scattering amplitude
Ale’;el Ale’;e’
w(y,0)=U, —( : ) exp(ikp 7, ) +U, —( S ) exp(ik,r,)
T 5
scattered displacement P-wave S-wave
from a flaw
incident wave with
polarization
J— ) d* in problem (2)
'/,\\’// \\\\
A Y d’|le”,d° Le
“.‘ e?
i fla : rs‘;
‘ | X ;  Scattered wave of
U, ... displacement / ’ “\ /type o (@=PS)
amplitude for wave T
of type B (B = P,S) in N
problem (1) T

Recall the scattered displacements in the far field of the flaw can be described in terms of
scattering amplitudes. Also note that if the receiving transducer acts a sending transducer it
will generate waves with a polarization vector d” or d® at the flaw. This polarization vector

is important, as we will see.
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Ultrasonic Measurement Models

3-D scattering amplitude

f.oP Fes
uscatt (y’ Cl)) — UO‘A(ei—,eS)exp(ikpr;)-fUO A(ei ,es )eXp(lkyrs‘)
I8 s

However, it can be shown that

A(e/ser)-(—a)= [ A(#".7)" ) as

[

vector scattering polarization vector of incident

amplitude of waves  aves in problem (2)
in problem (1)

The component of the scattering amplitude in the negative d” or d® direction can be shown
to be an integral over the surface of the flaw of a scalar function that appears in the
measurement model.



Ultrasonic Measurement Models

Measurement Model - Quasi-Plane Waves

A2 PG | [ p0pe) 4(50 20)
V (w0)= 22 | gy 4(30,20) ds
(0)=s(0)] S5 20  [7O7a(.5)
A(efser)(—a%)= [ 4(i),2)) as
Sy
The beam velocity terms and flaw scattering terms appear separately in

this model but they still must be combined before the voltage can be
obtained

Thus, the measurement model can be written in terms of the normalized velocity fields and
this scalar flaw scattering term.



6) Now, assume a small 3-D flaw, i.e. where the incident waves do not
vary significantly in amplitude over the surface of the flaw

X, PO (x,%,,%,)=7"(0,0,0)= 7"
V9 (x,x,,x,)=V"(0,0,0) =7,
X3
X,
Then
4z PC |[ppe) () ~(1)
Ve(@)=s( ){ - #} AV, 7)) dS
! —ik,S, pic, |:O ' i|5“[ (j ’ )
and, recall

If we now assume that the flaw is small enough so that the velocity fields do not vary
significantly over the flaw surface, then these velocities can be taken out of the integral and

the remaining integral is a scalar scattering amplitude term that is the specific component
of the vector scattering amplitude defined previously.



Ultrasonic Measurement Models

Measurement Model (Thompson-Gray form)

R. B. Thompson and T. A. Gray, J. Acoust. Soc. Am., Vol. 74, (1983), pp. 140-146.

V(@) =s (@) 775 | Alefse7)-(-a" )}{—;ﬁs %}
2% 4 11

beam models 4 (e,ﬂ 5 e? ) a))

plane wave far field
scattering amplitude

acoustic/elastic component

transfer function 4
t (0)=| V7| A(e”,e%, 0 _ PG
A( ) |: 0 0 :||: (1 s ):| —ikZSA p1c1

This final form is then in a form due to Thompson and Gray called the Thompson-Gray
measurement model. A very important feature of this model is that the flaw scattering
response is separate from the other terms so that in principle it gives us a way to extract
flaw information from the measured ultrasonic signals through deconvolution. In contrast,
in the Auld model the scattered waves due to the flaw and transducer(s) wave fields are
intermixed. Note that the original derivation of the Thompson-Gray model did not identify
the scalar scattering amplitude as an explicit component of the vector far field scattering
amplitude, as we have done here.
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Ultrasonic Measurement Models

Measurement Model (Thompson-Gray form)

V(o) = S(a))[l}o(l),;o(z)][A(ef’,ej,a))][_;—ﬂs%}
24 ™1

1) linear, reciprocal acoustic and elastic media (harmonic disturbances)

2) the output velocity for the transducer(s) can be written in a separable
form

3) the pulser, receiver, transducers and cabling can be replaced by
equivalent linear, time-shift invariant (LTI) systems.

4) the transducers are assumed to behave as piston radiators operating
at high frequency

5) the incident waves are quasi-plane waves in the vicinity of the flaw

6) the scatterer is a small 3-D flaw where the incident waves do not vary
significantly in amplitude over the surface of the flaw

Here is the Thompson-Gray model and the assumptions that it is based on.
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Ultrasonic Measurement Models

6a) If instead, the scatterer is a small
cylindrical flaw (e.g. side-drilled hole),
with incident and scattered wave
directions in the plane of the cross-
section then we can assume

148, (xl,xz,x3) —_pW (0, xz,O) = I}O(l)
ye (x,x,x;) = y (0,x,,0)= 148

A E.x) = A x) (113 ony

j b l] b

In this case
A psc S0)52) S(0) ()

VR(a))zs(a)){'—#} VoV ldx, | AV ,7,) ) ds
—ik,S, pi¢ 1en;:h,L CJ‘: ( )
X
X3
¢, -

For small two-dimensional flaws such as side drilled holes we can again make the
assumption that the incident and scattered fields lie basically in a plane perpendicular to
the axis of the “flaw” but the incident wave fields will vary along that axis so that we must
integrate the incident velocity fields along that axis and the scattering term reduces to a
line integral around the cylinder in a plane perpendicular to that axis.



Ultrasonic Measurement Models

3-D scattering amplitude component of a 2-D, cylindrical geometry (end effects
neglected) is just

4, (ef’,ef,a}) =LI A(Gﬁl),f,(}))ds
¢

so that the measurement model can be expressed, finally, as

Ve(@)=s(w) J. VP @y,

length,L

A3D(eiﬁ’e?’a)) Az p,c,
L —ik,S, pic

Schmerr, L.W., and A. Sedov, "Modeling ultrasonic problems for the 2002 benchmark session,"
Review of Progress in Quantitative Nondestructive Evaluation, D.O. Thompson and D.E. Chimenti, Eds.,
American Institute of Physics, Melville, N.Y. , 22B,1776-1783, 2003.

The 3-D scattering amplitude component of a 2-D scatterer of length L with the end effects
neglected can be written as shown and the measurement model is in the form given.



Ultrasonic Measurement Models

Relationship between 2-D and 3-D scattering amplitudes

iz A (el
Azp(e;g,ej,a)):\/? SD(e,LeA a))

which gives the alternate form

Velo)=s(o VOV Pdx, |4 eiﬂ,e‘f,w{ @&}
)=t ] R |, (o)

Many model studies of cylindrical scatterers treat the scattering problem as a purely 2-D
problem described by a 2-D scattering amplitude in the far field. We can relate such 2-D
model results to our scattering problem, which is inherently 3-D in nature and write the
measurement model in terms of a scalar 2-D scattering amplitude instead if we so desire.



Measurement Model for 2-D scatterers

A A (e.ﬂ,e“ a)) 47 op.c
V. (0)=s(w POpRgy |22 7 { P2 2}
R( ) ( ) '[ Ll ’ —ik,S, P

length,L L

1) linear, reciprocal acoustic and elastic media (harmonic disturbances)

2) the output velocity for the transducer(s) can be written in a separable
form

3) the pulser, receiver, transducers and cabling can be replaced by
equivalent linear, time-shift invariant (LTI) systems.

4) the transducers are assumed to behave as piston radiators operating
at high frequency

5) the incident waves are quasi-plane waves in the vicinity of the flaw

6) the scatterer is cylindrical flaw with incident and scattered wave
directions in the plane of the cross-section, where the incident waves do
not vary significantly in amplitude over the small cross-section of the flaw

Here is the Thompson-Gray type of measurement model for 2-D scatterers and the
assumptions on which it is based.



Ultrasonic Measurement Models

General Measurement Model (Auld form)

s(o) 1) o) @) o)
V()= 0.y _¢® 0 gg
«(@) Z! (o)) (@) (o) 5[( ' ' )

1 3-D small flaw (Thompson-Gray form)

V(@) =5(0)[PO7O ][ oo (e, w)]{—_,jfs Z_j
254 11

2-D small flaw (Schmerr-Sedov form)

S ()17 A ﬁ; ?:
Ve (a)) =5 (a)) j VO(I)VO(Z)dxz 3D (el € (0) |: .472' £>C, :|
length,L L _lkZSA plcl

In summary, we have three types of measurement models: (1) the Auld type of model that
is applicable to a very wide range of problems and flaws, (2) a Thompson-Gray type of
model suitable for the inspection of 3-D small flaws, and (3) A Thompson-Gray type of
model developed by L. Schmerr and A. Sedov that is suitable for 2-D scatterers such as side-

drilled holes.



Ultrasonic Measurement Models

Using Measurement Models

Is the system linear and reciprocal?
Electrical linearity checks of pulser/receiver
Cabling reciprocity checks

For a transducer, reciprocity implies the voltage and current measurements
when it is being used as a sender and receiver must be related:

V.I=VI
ANNAN
_____________________ 1 ANNN
. 1,=0
A —>
| | eV > }—» A 4.1 VOO
bl [S

} A 1r=0

Linearity and reciprocity are two key assumptions in all the ultrasonic measurement
models. We can, of course, do linearity checks on the pulser/receiver (and such checks are
sometimes specified in inspection protocols). We have seen how to check reciprocity for
our cable measurements. We can examine a transducer acting as a sender and receiver, as
shown, and check its reciprocity with the relationship given above for the measured
electrical signals. This relationship comes from writing the ratios V/I and I./V, in terms of
the 2x2 transfer function components for the transducer on transmission and reception
and assuming those components satisfy reciprocity. In that case these ratios are equal,

leading to the above expression ).
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Ultrasonic Measurement Models

Is the transducer acting as a piston?

Compare responses with theoretical predictions in a reference experiment,

€.g. AAAA

e
—

Is a quasi-plane wave assumption valid?

Compare Z-S) Y0 Ti(/‘Z) as computed with a
J- Wﬁ_ﬁw n; dS  non-paraxial beam
s\ Va Vg Va Vs ' model
40,6, | [ pOp@) 4 (50 =)
with |:722j| J Vv A:\(Vj ’Tij )dS
2 s,

We can also check to see if a piston transducer model is appropriate by, for example,
moving a small reflector along the axis of the transducer and comparing the on-axis fields
with those predicted by a piston transducer model. For a Thompson-Gray type of model,
which relies on the quasi-plane assumption, we could check the validity of that assumption
by comparing the fields found in a general Auld type of model with the reduced forms
appropriate for a quasi-plane wave (paraxial) model.
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Ultrasonic Measurement Models

Is a small flaw assumption valid?

Compare J. 2% ( #l )) ds

with [1}0(1)1}0(2)}4313 (elp”e? , a)) (3-D case)

or
[ I V dx2] ('B ef,a)) (cylindrical case)
length,L

The Thompson-Gray model also assumes the fields do not vary significantly over the flaw
surface so that assumption can also be checked by a comparison with the more general
underlying model terms.
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Ultrasonic Measurement Models

What supporting measurements are needed?

Velocity, Attenuation

Obtain in separate experiments

System factor

Obtain in separate experiment

Transducer effective radius, focal length

R

Obtain in separate experiments

An ultrasonic measurement model also relies on a number of supporting measurements.

These include measurements of velocity and attenuation in the materials being inspected
and the measurement of the system function (or its underlying components if we want to
do a more in-depth characterization of the system as we have discussed). The transducer

effective radius and focal length are also parameters that can be measured.
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Ultrasonic Measurement Models

Summary

A measurement model form is available suitable for simulating most NDE
inspections

To make these models useful one needs to have
ultrasonic beam models
flaw scattering models
experimental determination of essential parameters

Once all these elements are available one has a very powerful tool for
designing tests, optimizing components, and replacing expensive
experimental procedures.

The measurement models we have discussed give us the capability to model many NDE
experimental setups. These models can both be used as design tools and for
understanding the signals seen in ultrasonic tests.
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Measurement Model Examples

Here we will look at some comparisons of measurement model predictions with measured
signals.



Learning Objectives

Comparison of the measured signals and the signals
predicted by a measurement model for three common
reference reflectors:

spherical pore
flat-bottom hole (flat crack)
side-drilled hole

To see the quality of the signals predicted by our ultrasonic measurement models in
comparison with actual experimental signals, we have shown some time domain responses
for three types of commonly used reference reflectors.
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(1) The measurement model results for the pulse-echo response of a 0.6921 mm diameter
spherical void, using the Thompson-Gray measurement model and the Kirchhoff
approximation for the scattering amplitude. (2) The system function, as measured in setup
(a), for the 12.7 mm diameter, 5 MHz transducer used. (3) A comparison of the
measurement model signal (solid line) with the experimentally measured signal (dashed

line).




Flat-bottom hole or flat crack at normal incidence

“Large” flaw measurement model
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The measurement model results for the pulse-echo P-wave response of a 1.5875 mm
radius flat-bottom hole (which also looks like a flat crack), where the system function was
measured as in the previous case and the variation of the amplitude of the incident waves
over the flat-surface was taken into account in the Kirchhoff approximation (Highly specular
reflectors, like a flat-bottom hole or flat crack, are more sensitive to the small flaw
assumption than are reflectors like the spherical pore just considered) . Shown is a
comparison of the measurement model signal (solid line) with the experimentally

measured signal (dashed line).




Side-drilled Hole

2-D Measurement Model
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Comparison of the measurement model predictions for the pulse-echo P-wave response of
a 1 mm diameter side-drilled hole with a 5MHz transducer (solid line) with the
experimentally measured signal.
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Special Topics — 1
Dispersion

Here we will briefly describe wave dispersion



Learning Objectives

Definition of dispersion
Group velocity

Examples

We will define dispersion and the group velocity of waves. We will also give an example of
the effects of dispersion on waves as they propagate.



Dispersive Waves and the Group velocity

Recall that the wave number k, and the frequency, o, were related to
the (phase) velocity, c, through the relationship

k= o ... frequency in rad/sec

If the phase velocity, c, is a function of frequency then we say that the
wave is dispersive and the wave number is

0]
k =
(») c(o)
and we have dk 11 o dc 1
a*z[ _?%} <

where c; is called the group velocity.

The group velocity can be shown to be the speed at which the energy
in a dispersive wave propagates.

For propagation problems where the wave speed is a constant, the wave number varies
linearly with the frequency. Howeuver, if the wave speed itself is a function of frequency,
then the wave number is a more complex function of frequency and its derivative with
respect to frequency is the reciprocal of the group velocity. Physically, the group velocity is
the wave speed at which energy propagates in a wave. The frequency dependent wave
speed itself is called the phase velocity.



C C
Group velocity Ce = o de 7 de

cdo cdf

where f is the frequency in cycles/sec (Hz)

If A(f) is the Fourier transform of a(t) then we have for a
propagating non-dispersive plane wave traveling in the +x
direction with a constant phase velocity, c,

+0

a(t-x/c)= I A(f)exp[2rifc/c]df

-0

However, if the phase velocity is a function of frequency then as
the wave propagates with its energy traveling with the group
velocity and its profile changes with increasing distance

a, (t,x):TA(f)eXPI:zmﬁ‘/c(f)]df

-

Here is the group velocity expressed in terms of the phase velocity and its derivative.

The superposition of non-dispersive harmonic waves through the use of the inverse Fourier
transform produces a traveling wave in the time domain that always has the same profile.
The superposition of dispersive harmonic waves, however, generates a traveling waveform

whose shape changes.



c=6[1+f/50] mm/usec  fin MHz

t, psec

Propagation distance x=0

To see an example of dispersion, consider a waveform which starts out at x = 0 with a “box”
profile in time, as shown. Let the wave speed (of the medium it is propagating in) have the
simple linear dependency on frequency, as shown.



0 1 2 3 4 5 6 7 8 9 10
t, psec

Propagation distance x =10 mm

If one computes the inverse Fourier transform when the wave is at x = 10 mm, the
waveform has changed dramatically, with significant ringing preceding and within the wave
form itself. The dotted red line would be the waveform if it traveled in a non-dispersive

medium at 6 mm/ microsec.



t, psec

Propagation distance x =30 mm

At x = 30 mm the wave distortions are even more pronounced.



0 1 2 3 4 5 6 7 8 9 10
t, psec

Propagation distance x =50 mm

At x = 50 mm again there are continuing wave form changes. The large ringing see at earlier
times comes from the fact that the higher frequencies travel with higher wave speeds in
this case so they run ahead of the main wave form.

Waves traveling in plates, pipes, and shells (called guided waves) inherently are dispersive
so that guided wave NDE inspections must deal with the effects of dispersion.
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Statistical Foundations of Pattern Recognition

We will give a very brief overview here of how we can use statistical methods to evaluate
the meaning of ultrasonic NDE flaw signals.



Bayes Theorem
Decision-making
Confidence factors
Discriminants

The connection to neural nets

An ultrasonic NDE flaw measurement is an indirect measurement in that we normally have
a measured output such as a voltage versus time trace received from the flaw which we
must interpret to determine the flaw characteristics such as size, type (e.g. crack or
inclusion) or material properties, etc. We can view many of these problems as pattern
recognition problems. Statistical methods based on probabilities have long been used in
this task so we will examine a statistical approach to the decision-making process in pattern
recognition, based on Bayes theorem, which we will define shortly. We will go through
some simple examples and introduce uncertainties in the decision-making process with
the use of confidence factors.

We will see how the underlying probabilities can be replaced by quantities
called discriminants and how we can learn such discriminants directly from the underlying
data. We will connect this learning process to a simple form of a neural network. Neural
nets are powerful pattern recognition tools that we will discuss more extensively in a
separate presentation.



: I||| l
feature (pattern)
NDE measurement system  extraction
observed patterns

_><:>_> h

possible classes

Problem: How do we decide 9
which class x, belongs to ' L

In an ultrasonic NDE flaw measurement system we can obtain some “raw” (i.e.
unprocessed) flaw signals and then use those signals to extract some specific features from
the signals in the form of observed patterns. The problem we want to consider here is:
given an observed pattern of features and a set of possible classes of flaws from which it
could come, how do we decide which class to choose? We will give a simple example
shortly that will tie this general pattern recognition task more closely to an ultrasonic
measurement but first we need to define some of the probabilities that we will be talking
about when we use Bayes theorem as part of the decision-making process.



Bayesian (probabilistic) approach | | |
ALLP

Let P(Ci) = apriori probability that a pattern belongs to class c;,
regardless of the identity of the pattern

P(Xk) = apriori probability that a pattern is x, , regardless of
its class membership

P(Xk | cl.) = conditional probability that the pattern is x, , given
that it belongs to class c;

P(Ci | X ) = conditional probability that the pattern's class
membership is ¢; , given that the pattern is x,

P(Xk »C; ) = the joint probability that the pattern is x, and the
class membership is ¢;

A Bayes approach is based on probabilities, but there are number of different types of
probabilities we must consider. There are two a priori probabilities. There is the a priori
probability that the pattern we see comes from a specific class and the a priori probability
that we will see a given pattern. There are also two conditional probabilities. There is the
probability that a given pattern is present when a measurement is done on a particular
class and the probability that a particular class is present given that we see a given pattern.
Finally, there is a joint probability that both a given pattern and given class are both
present.

In the next slide we will put some more specific flesh on the meaning of
these probabilities.



Example: consider the case where there is one pattern value that is
observed or not, and two classes (e.g. signal or noise) || | |
1 1

X, Cq + P(x)=6/10
~X, C4
X, Cy « P(¢)=7/10
~X, C, _
X, C, 4 Then P(cz)—3/10
X, Cq + P(x|c]):4/7
X, Co 4
~X, Cq P(x|cz):2/3
N g: P(c,|x)=4/6
P(c2 \x)=2/6
(~x means x not observed) P(c x)=4/10 (see *s)
19
P(c,,x)=2/10 (see#s)

Consider the flaw detection problem of distinguishing between whether we are seeing a
flaw signal or are simply seeing “noise.” Here there are obviously two classes : c1: flaw
signal and c2: noise (no flaw). Suppose we use the amplitude of the flaw voltage signal to
make that decision and set a voltage threshold value above which we say we have
observed a flaw, a pattern feature we will label as x, and below which we say we have not
observed a flaw, a pattern feature we will label as ~x. Now, let us take ten measurements
on samples containing either flaws or no flaws and suppose the ten results are as shown
above. Then from examining those cases we can determine a priori probabilities.
conditional probabilities, and joint probabilities, as shown. Of course these are very few
samples so we should not take probability values based on such a small amount of data too

seriously. They are simply meant to illustrate the meaning of the various probabilities we
defined.



Bayes Theorem

P(c,x,)=P(x,|¢;)P(c,)
=P(c,|x,)P(x,)

or, equivalently, in an "updating form"

pr:g\évability P(c, X, ) = P(X" K )P(c" ) ;)?Ic()jt:ability
of ¢, ! P(xk) of ¢,
having

seen X,

Bayes theorem connects these probabilities since it says we can write the joint probability
in terms of either sets of conditional probabilities and a priori probabilities, as shown. We
can write this theorem in a form where given a set of a priori probabilities and a set of
measurements, we can give an “updated” probability (from the original a priori probability
that of a given class) that a given class is present, based on the conditional probability that
we have a set of features from that class .



Bayes Theorem |||||
1 1

P(xk |ci)P(cl.)
P(x,)

P(Ci|xk):

Since P(x,)= ZP(xk |cj)P(cj)
j
we can calculate P(cl, | xk) if we know the probabilities

P(cj) j=12,... and P(xk|cj) j=12,..

In Bayes theorem it appears we need to have three probabilities to do an “updating” but in
reality we only need the a priori probabilities of the classes present and conditional
probabilities that a measured pattern feature comes from a particular class.



Now, consider our previous example

P(c.x)=P(x]¢)P(c) -|||||-

P(x)=6/10

]’;ECI)):_ZQE = (4/7)(7/10)=4/10
P(xz| c_):4/7 =P(c | x)P(x)
P(x|cl):2/3 =(4/6)(6/10)=4/10

P(c1 \x):4/6 or, in the "updating” form
P(e,|x)=2/6 P(x]¢,)P(c,)
P(c,x)=4/10 P(CI|X): P(x|¢)P(c)+P(x|c,)P(c,)
P(cy,x)=2/10 ~ (4/7)(7/10)

(4/7)(7/10)+(2/3)(3/10)
(4/7)(7/10)

(6/10) ~— p(x)
=4/6

Here is our previous example of ten measurements, where we see that the various
probabilities are indeed related through Bayes Theorem. Of course, this is an artificial
“static” example where we have simply used Bayes theorem to relate the various
probabilities from a set of known examples. The real power of Bayes theorem comes when
we use the updating form of that theorem in a “dynamic” setting to provide an improved
decision of what we are seeing based on new data as it comes in. We will give a specific
example of this next.



As a simple example, consider trying to classify a flaw as a crack or a
volumetric flaw based on the these two features: || | |
1 1

X4 : a positive leading edge pulse, PP

Va¥a¥al Ay

X, : flash points, FP

_A,
I

Cracks are typically more dangerous flaws than are volumetric flaws such as inclusions.
Thus, suppose we consider trying to classify a flaw as a crack or non-crack (volumetric
flaw). From our discussions of flaw scattering we know an isolated crack will produce a pair
of negative and positive flashpoint signals in the time domain, as shown. A volumetric flaw,
on the other hand, will often produce a large leading edge response, which may be positive
or negative, depending on the acoustic impedance of the flaw relative to the surrounding
material. A positive leading edge response will likely be easier to distinguish from a set of
flashpoints, so let us choose a positive leading edge response and flashpoints as the two
features we will use to classify an unknown flaw signal. Of course we will have to do some
processing of the raw time domain signals to determine if either feature is present, but let
us assume that processing is done and a criterion is chosen so that we can determine the
existence of these features from the signals.



A :
il

P( crack ) =0.5
P( volumetric ) = 0.5

P( PP | crack) = 0.1 (cracks have leading edge signal that is always
negative, so unless the leading edge signal is mistakenly identified,
this case is unlikely)

P( PP | volumetric ) = 0.5 (low impedance (relative to host)
volumetric flaws have negative leading edge pulses and high
impedance volumetric flaws have positive leading edge pulses, so
assume both types of volumetric flaws equally likely)

P( FP | crack )= 0.8 ( flashpoints is a features strongly characteristic
of cracks, so make this probability high)

P( FP | volumetric ) =0.05 (alternatively, make this a very low
probability)

Now, we need to set up the probabilities present in Bayes Theorem. These could come with
previous experience from tests done on samples with know flaws or they could come from
educated estimates.



(1) Now, suppose a piece of data comes in and there is firm evidence that
flashpoints (FP) exists in the measured response. Then what is the ||
probability that the flaw is a crack?

P(FP|crack)P(crack)
P(FP | crack)P(crack) + P(FP | vol)P(vol)
(0.8)(0.5)
(0.8)(0.5)+(0.05)(0.5)
=0.94118

P(crack | FP) =

Thus, we also have

P(vol | FP) =0.05882

Now, let us use Bayes Theorem as we do testing on a sample with a flaw that is unknown.
Here is an example where our processing of the signals gives a firm indication of
flashpoints. Flashpoints are strong indicators of cracks so we see our updated estimate of
the probability that the flaw is a crack is very high, certainly much higher than the 50/50

probability we started out with.



(2) Now, suppose another piece of data comes in with the firm evidence of a
positive leading edge pulse (PP). What is the new probability that the flaw is I
a crack? !

P(PP | crack)P(crack)
P(PP | crack) P(crack) + P(PP | voZ)P(vol)
(0.1)(0.941 1 8)
(O. 1)(0.941 18) + (0.5)(0.05882)
=0.76191

P(crack | PP) =

and, hence P(vol ’ PP) =0.23809

Note how the previous P(crack | PP) was now taken as the new, apriori

P(crack) in this Bayesian updating

Now we use another data sample such as a measurement of the flaw from a different
angle, where there is firm evidence of a positive leading edge signal. We see how the
probability that the flaw is a crack has been reduced by this new data.



(3) Finally, suppose another data set comes in with firm evidence that the
flashpoints (FP) do not exist (written as ~FP). What is the probability now | |
that the flaw is a crack? 1 I II

P(~ FP|crack)P(crack)
P(~ FP|crack)P(crack)+P(~ FP|voZ)P(vol)
(0.2)(0.762)
~(0.2)(0.762) +(0.95)(0.238)
=0.403

P(crack |~ FP) =

and now

P(vol |~ FP)=0.597

Note:  P(FP|crack)=0.8— P(~ FP|crack)=0.2
P(FP|vol)=0.05— P(~ FP|vol) =0.95

We could also have a data sample where there is firm evidence that flashpoints do not
exist. We can again use Bayes theorem in this case. Of course the new estimate of the
probability that the flaw is a crack, given that we are certain that flashpoints are not
present in this case, has been significantly reduced.
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In all three cases we must make some decision on whether the flaw is a
crack or not. One possible choice is to simply look at the probabilities and |
decide x, belongs to class ¢ = ¢; if and only if 1 I

P(cj. |xk)>P(c[ 1X,)

forall i=L2,..,.N i#j
Since in our present example we only have two classes, we only have the

two conditional probabilities
P P(crack|x,), P(vol|x,)

and since P(vol Ix, ) =1 —P(crack \ Xk) , our decision rule is
just

P(crack|x,)>1-P(crack|x,)

or P(crack|x,)>0.5

Bayes theorem gives us updated probabilities but we still need to use those probabilities to
make a decision on whether the flaw is a crack or not. We could simply choose the
conditional probability output from Bayes theorem which is the largest. Since there are
only two classes in this case, this means we would make a decision when the output
conditional probability is bigger than 0.5.



Using this simple probability decision rule, in the previous three cases we || | ||
1 1

would find
decision
(1) P(crack|FP)=0.941 crack
(2) P(crack | PP) =0.761 crack
() P(crack |~ FP)=0.401 volumetric

There is no reason, however, that we need to make a decision on the
conditional probabilities p (C,- \ Xk) by themselves.

We could synthesize a decision functions &; (Xk) from such conditional
probabilities and use the &; instead. This is the idea behind what is

called Bayes Decision Rule:

Based on this type of decision process, here are the classification decisions we would make
after our three tests. However, there is no reason to only use the probabilities themselves.
We could instead define a decision function which is based on those probabilities, leading
to what is called Bayes decision rule.

15



Bayes Decision Rule |||
JHIL
Decide x, belongs to class ¢ = ¢; if and only if
g (x)>g(x)
forall i=12,.,.N i#j where & (%)

is the decision function for class ¢;

If we have generated such a decision function here is Bayes decision rule.

16



Example: Suppose that not all decision errors are equally important. We
could weight these decisions by defining the loss, I; that is sustained when | ||
we decide class membership is ¢, when it is in reality class G- Then in .l |.
terms of these losses we could also define the risk that x, belongs to to

class c; as

R(x,)=1P(c,|x.)+ Y L,P(c;|x,)

J#i
For our two class problem we would have

Rl(xk):lllp(cl |Xk)+llzp(cz |XA)
R, (Xk)ZIZIP(Cl |Xk)+122P(cz |Xk)

The decision rule in this case would be to decide x, belongs to class c; if

and only if
Rl(x,{)<R2 (xk)

or, equivalently (4, =5y ) P(c,[x,)<(Ly—1,) P(c, 1x,)

Here is an example of setting up such a decision function by including estimates of the
losses sustained when we do a misclassification to construct a risk function that we will use

in our decision-making instead.

17



In the special case where there is no loss when we guess correctly, then I,
=1y, = 0. If, also it is equally costly to guess either c, or c, then |,, = 1,; and ,l |I
the decision rule becomes

_lzlp(cl | Xk) < _121P(Cz | Xk)
or P(c1 |xk)>P(c2 |xk)

which is the simple decision rule based on conditional probabilities we
discussed previously

Note that this risk function approach also includes the special case of just using conditional
probabilities as a special case.

18



Now, consider our previous example again and let c, = crack,
¢, = volumetric flaw and suppose we choose the following loss factors: , I ||

(a gain. If we guess cracks, which are dangerous,
correctly we should reward this decision)

=1 (if we guess that the flaw is a crack and it is really
127 volumetric, then there is a cost (loss) since we may do
unnecessary repairs or removal from service)

L, =10 (if we guess the flaw is volumetric and it is really a
crack, there may be a significant loss because of a loss
of safety due to misclassification)

(if we guess it is volumetric and it is , there might be
no loss or gain)

To construct the risk function we need to choose the loss factors. These factors may come,
for example, from historical data or from safety concerns. Here is a set of choices for the

loss factors.



In this case we find the decision rule is — decide that a crack is | ||
JHIL

present if
(=11.0) P(c, %) < (~1.0) P(c, | x, )
P
or Plalx) >0.091
P(c,|x,)
For our example then we have decision
1) P(c¢1x,) _0941 Lo 0001 c; (crack)
P(c,|x,) 0059 7
) M:w_3.lg>0.091 ¢, (crack)
P(c,|x,) 0239
P ~
(c1-%) _ 0401 o 0,001 ¢, (crack)

3) \alr%) 0401
© P(c,l~x,) 059

If we use this risk function in our decision-making process with the previous three test
examples, here are the decisions. Note how the losses have significantly affected our final

decision.



Bayes Theorem (Odds) | ||
AL

We can also write Bayes Theorem in terms of odds rather than
probabilities by noting that for any probability P (condition, joint, etc.) we
have the corresponding odds, O, given by

OZL (or p:L )
1-P 1+0
_ P(Cilxk)
Example: O(c Ix,)= 1-P(c,|x,)

Using this definition of odds, Bayes Theorem becomes

O(¢,1x,)=LR O(c,)

P(x,{ \c,)

2\ 1%) s called the likelihood ratio
P(X,{ ‘N ci)

where  ;p_

Instead of using probabilities we could also write Bayes theorem in terms of odds, since we
are accustomed to dealing with odds in a number of venues. In this form we see that the
odds are simply updated by the likelihood ratio, LR, which is defined here



Going back to our example with x, =PP, x, =FP |||
J111L

0.5

P(a)=05  0(q)=rto=1
P(e)=05  Ofc)=—o =1
P(x]¢)=0.1 O(x,|c])=%=0.lllll
P(x1¢,)=0.5 O(x1|cz)=%=l
P(x,]¢)=0.8 O(xl|cl):%=4
P(x,]¢,)=0.05 O(x2|cz):%20.0526

Then for our three cases:

Here is our previous example of a two class problem with the two features of flash points
and positive leading edge pulse, where we show all the odds corresponding to our original
probabilities.



P(FP | crack)

(1) O(crack | FP) = P(FP - crack)

O(crack)

P (PP | crack)

O(Crack|PP):m

(@] (crack )

il

3.2

0.8
=—2(1)= P k| FP)=——=0.941
0.05 (l) 16 and (crac | ) 116

0.1
_ Yl - P k| PP)= =0.762
=os16)=32  and  Plerack|PP)=rm
@) 0(crack |~ FP) = MO(cmck)
~ ~ crac
0.674
- 02 (32)=0674 and P(Cka\NFP)=1+O674:0-403

Here are the results of our three experiments in terms of the resulting conditional odds.
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As we see from this result we can update the probabilities according to Bayes
Theorem by P(x,|c)

0(c,|xk):m0(cl) o

if the feature pattern x, is observed and by

P(~x,|¢)
O(c |~x, ) =——%0(¢
( k) P(ka ‘NCI') ( )
if the feature pattern x, is not observed. We can combine these two
cases as
O(cl. | f(k) = LR(f(k,ci)O(ci)

where LR(3,.c) = P(Axk <)

P(xk |~ c,)
and X, ifx, is observed

~X, if x, is not observed

Here we show that we can use the same form of Bayes theorem if a feature is observed or
not observed by combining the two cases into the same form but with different likelihood
ratios.



Criticisms of this Probabilistic Approach I| | | I
1 1

1. It does not include uncertainty in the evidence of the existence (or
not) of the feature patterns

2. ltis difficult to assign the apriori probabilities
To solve the first problem we will show how to introduce uncertainty with
confidence factors

To solve the second problems, we will discuss the alternative use of
discriminants

Notice that there are two problems with this simple use of Bayes theorem. First, we always
assumed there was firm evidence (by which we meant certainty) that a feature was
present or not. Second, we had to assign initially the a priori probabilities, but gave no way
to actually do that assignment in a given problem. Thus, we will now try to address those

problems.



Confidence Factors

Consider Bayes Theorem in the odds form 1 || | | ||

O(c %)= LR(%,.¢,)O(c,)

In updating the odds, the likelihood ratio is based on being able to have
firm evidence of the existence of the pattern x, or not

. P(x,|c
R Goe) =g
k i

We can introduce uncertainty into this updating by letting a user (or a
program) give a response R in the range [-1,1], where

R =1 corresponds to complete certainty x, is present
R =0 corresponds to complete uncertainty that x, is or is not present
R = -1 corresponds to complete certainty that x, is not present

We can introduce uncertainty in the updating of odds with Bayes theorem by intruding a
confidence factor, R, which varies from -1 to 1 as indicated here.



Then in updating the odds, we can replace the likelihood ratio, LR, by
a function of LR and R that incorporates this uncertainty || ||

O(c 1%, )=/ (LR.R)O(c,)

There are, however, some properties that this function f'should satisfy.

They are:

1. ifR=1 f=LR(x,.c)

(if we are certain in the evidence of x, , we should reduce to ordinary Bayes)
2.1f R=-1 [=LR(~x,.¢)

(if we are certain x, does not exist, again reduce to ordinary Bayes)
3.IfLR=0,f=0

(if the likelihood is zero, regardless of the uncertainty, R, the updated odds should
be zero)

We then can replace the likelihood ratio in Bayes theorem with a modified likelihood
function that includes this confidence factor. Here are some properties such a function
should have.



A popular choice that appears in the literature is to choose
f(LR,R)=LR(%,.c,)|R|+(1-|R])

where, if R € [0,1] LR(%,,c,)=LR(x,,c,)

and, where, ifR € [-1,0]  LR(X,,c,)=LR(~X,,c,)

If we plot this function, we see the effects of R
f(LR,R)
LR(x,.c;)

1.0

777777777777777777 LR(~x,.c) |

Al

Here is a piece-wise linear function one often sees in the literature.
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Although this is a simple function to use, there is a problem with it which we
can see if we plot f versus LR for different |R|. ( Note that LR < [0,00) ) I| ||
1 1

f(LR,R)
7 IRI=

. |R| increasing
1.0 —————————————————————————————————— [R| =0

1-|R| |BJ(’i'ncrjeasing

‘1 0 LR

At LR = 0 the function /' does not go to zero as we said it should (see
property 3 discussed above). To remedy that problem, we need to
choose a nonlinear function.

However, this choice does not satisfy the third property we gave earlier. Thus, we need to
choose a different, nonlinear function.

29



One choice that satisfies all three properties f'should have is ||
. I| Iy

f(LR,R)=(LR)"

f(LR,R)
A IRI=1

) |R] increasing
1.0 —————————————————————————————————— IR] =0

‘ IR| ibcreasing

‘1.0 LR

Here is one choice of such a nonlinear function which does have all the three properties

listed earlier.
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This gives a dependency on R that is nonlinear

F(LR,R)

LR(X/(’C,-) 777777777777777777777777 H

Al

This function is also nonlinear in R
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With this choice of f, we would have || | ||
1 1
O(c,1%,)=LR"O(c,)

However, if one wants to work in terms of probabilities, not odds, we have

P(ci|§(k)=

with o Pla)

P(%, |~¢)

A X, R>0

and Xx, = e x R<0
k

With this choice of the function then we can write Bayes theorem either in terms of odds
or probabilities in forms that allow us to adjust the updating in a manner which allows us to
incorporate uncertainty that the features are present in the decision-making process.



Bayes theorem, even in this modified form to take into account uncertainty in
the evidence, still requires us to have apriori probability estimates and those
may be difficult to come by. How do we get around this? 1 |

Consider our two class problem where we have classes (c4, ¢, ) and where
X, =X is a single feature (pattern). According to Bayes decision rule we could
decide on ¢, (or ¢, ) if g4(X) > g,(X) (or g,(X) > g4(x) ). For example, suppose
both g, and g, were unimodal, smooth distributions. Then we might have:

& (x),

N 5 ()
decj.dé Cq
decide ¢,

xthreshold

Then we see the decision rule is really just

CIaSS = c] l]{ x < xlhreshuld

class =c, if x> X000

Now, let us turn our attention to the problem of having to give the a priori probabilities. In
the two class problem we have been examining where we use Bayes decision rule, consider
if there was only one feature, x, being used. Then the decision functions might look like two
smooth functions having peaks at different values of x so that we could distinguish
between the two classes. However, if instead of using the functions themselves to make a
decision, we see we could instead just use a threshold value for x (where the two functions
are equal) to make the decision.
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Thus, if we had a way of finding Xipreshold which serves as a
discriminant, we could make our decisions and not have to even consider I| |I
the underlying probabilities!

However, we have not really eliminated the probabilities entirely since they
ultimately determine the errors made in the decision making process.

Note that in the more general multi-modal decision function case,
several discriminants may be needed:

XX X3

If we had a way to determine the threshold in this single feature case, we could then base
our decisions directly on that threshold value so that value serves as a discriminant. In
cases where the behavior of the underlying decision functions were more complex, we
might need several discriminants as shown in this example.
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If we take the g;(x) to be just the probability distributions P(c,. |x) || | ||
1 1

then recall that Bayes decision rule says that x, belongs to class ¢ = ¢; if and
only if
P(cl. | x) > P(cl. | x)
forall j=L12,...N j#i
or, equivalently P(c, | x)P(x)> P(cj | x)P(x)

which says that P(ci,x) > P(cj,x)
so that also P(x|c,)P(c,.)>P(x|c/)P(cj)

If x is a continuous variable, then we can associate probability distributions
with quantities such as p( ¢, x ) and p( x | ¢;) and so we expect that the
discriminants are dependent on the nature of these distributions. We will now
examine closer that relationship.

Here is Bayes decision rule for one feature x and where we have multiple possible classes,
written in terms of probabilities. If x is a continuous variable than we could replace these
discrete probabilities with probability distributions (as a function of x) and try to determine
the discriminants from these distributions.
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Probability Distributions and Discriminants

First, consider the 1-D case where x = x and where we assume the ! I| | | I'
distributions are Gaussians, i.e.

p(x,c,.):(()’i\/g)il eXp[—(x—M)z /ZGiZ]P(Ci)

where

mean value of x for class ¢,

i

o. = standard deviation for class ¢;

If we assume P(c,)= P(cj), o,=0,=0 then Bayes decision rule

says that x belongs to class c; if and only if
exp[—(x—/z[ )2 /2Uj|

exp[—(x—y,)2 /20'}

>1

Now, consider the case where there is one feature, x, which has continuous values, and
assume the joint probability distributions for the various cases are Gaussians with different
mean values and standard deviations. Note that Gaussians are smooth, peaked functions of
the type we considered previously. Then if, for example, we assume the a priori
probabilities are the same for all the classes then we can write the Bayes decision rule
solely in terms of the properties of these Gaussians.
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or, equivalently, x belongs to class c; if and only if | ||
J1L
2 2
(x_,ui) <(x_,uj)
forall j=L12,...N j#i

This is just the basis for the nearest cluster center classification method

However, it is only the mean values of the Gaussians that determine the class, so those
mean values act as discriminants and we could write our decision process in a form which
is called the nearest center cluster classification method. Thus, here is a simple example
where we can replace the underlying probabilities with dicriminants.
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Now, consider the more general case of N-dimensional features but ||
keep the assumption of Gaussian distributions. Then .l |.

pxe)=[n) "] exp[—g(x—uif z;'(x—u,)}P(c[)
where

ll,- ... N-component mean vector for class ¢;

3. ... Nx N covariance matrix
l

Let us generalize this problem by considering the more realistic case of multiple features
and multiple classes. However, we will continue to use Gaussians which now must be
written in terms of vectors and matrices. Do not be put off by these more complex forms
since we will see much of this complexity can reduce eventually to a more understandable

result.



Bayes decision theory says that x belongs to class ¢, if and only if || | | |
1 1

-1

P(Ci)|:(27Z')N/2 |Z,-|1/2:| CXP[_;(X—H,- )T Zl_—l (X_”i)}

Ple) ) e 7] exp| -4 xom ) = (3|

>1

Now, suppose we are on the boundary between c; and ¢; and also
suppose that

=X =01

where I is the unit matrix. Then
P(c,)exp| (x-n,)' (x-,)/ 20" ]
Ple,)exp| (x—n,) (x-n,)/20°

Taking the In of this equation then we have

=1

Here is Bayes decision theory in terms of these Gaussians. We will assume all the standard
deviation matrices are identical in terms of a scalar standard deviation value and look at
the case when we are on the decision boundaries between classes, since we know that is
where a discriminant can exist between those classes. Taking the natural log of the
expression seen in Bayes decision theory then gives the results seen on the next slide.
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which can be expanded out to give

21n[P(C’)}+2xT(ui -n,)/ " +(nin, —pin,)/ o =0

P(Cf)

However, these are just the equations of the hyperplanes
T —
x'w,=b,

with

Wij (ll,-—llj)/02

P(c.
b, = (lliTlli —Pil“/)/zaz ~In P((:))

The form of this result can be expanded out and written in matrix-vector form which shows
that the boundaries defined between the classes are hyperplanes that are characterized by
w and b matrices.



The w; and the b;; here determine the hyperplanes separating the classes
and hence are discriminants. If we can find a way to determine these
discriminants directly, we need not deal with the underlying probabilities that
define them. We will now examine ways in which we can find such
hyperplanes (or hypersurfaces in a more general context).

The w and b matrices are our discriminants. Notice that the b matrices depend on the a

priori probabilities but if we can find these discriminants directly then we do not need to
know those a priori probabilities. Thus, we now need to determine a way to obtain such

discriminants. we will give now a simple example of how to do that.
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Learning Discriminants with Neural Networks |||
ALLP

Suppose that we have a two class problem and a linear discriminant is
able to distinguish between observed patterns, x, of either class. Such a
problem is said to be linearly separable.

Geometrically, we have the situation where we can place a discriminant
hyperplane

xXw=b

between patterns, x, of either class. For example, for x = (x; , X, )

WX,
o ¢ class ¢4
class ¢ &
2 O o ©  Xw-b>0
T oo o
xw-b<0 /‘D
X
o
xX'w=b

U = pattern observed from class c,
<& = pattern observed from class ¢,

In the following slides we will examine a two class problem where we use two features
simultaneously to determine the class of a flaw. If we can define a line in this two
dimensional feature space which acts as a discriminant between the two classes then we
say that this is a linearly separable classification problem. The discriminating line here can
be defined by a 2-D vector w = [ w,, w, ] which is normal to the line and a scalar b which
represents the perpendicular distance from the origin to the line.

We will show that we can define a learning procedure that can directly
determine the separating line discriminant and show how this procedure is similar to a
neural network model where we use only a single model of a “neuron”. In a later
presentation , we will generalize these ideas to more detailed neural networks consisting of
many “neurons”
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Learning to distinguish between these two classes then consists of finding |||
the values of w, b that will separate the observed patterns. 1 I II

Note that we can augment the vector X = (xl,xz,...,xn)

and the weight vector w = (wl,wz,..., Wn)
. . A
by redefining themas w = (wl,wz,..., Wn,b)

xé(xl,xz,...,xn,—l)

Then the equation of the hyperplane in terms of these augmented vectors
becomes

xXw=0

To connect this linearly separable problem more closely to neural networks, let us
incorporate the b constant into the weight vector, w, and similarly augment the vector x as
shown. Then the hyperplane takes the simple form shown.
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T
- ﬂm
1 1
This equation can be related to neural network ideas since we can view

the process of making a decision c, or ¢, as similar to the firing (or not
firing) of a neuron based on the activity level of the inputs:

-1

X 1 D=>0 classc,
2, 0=
/ -1 D<0 classc,
X, WM

n+l X = —1

Now, the question is, how do we determine the unknown "weights", w, b ?

In this form we can relate our very simple discrimination problem to that of a “neuron.”
Real neurons receive inputs from many other neurons and they “fire” when the input
activity is high, thus exciting many other neurons. If we take our inputs as the elements of
the augmented vector x, multiplied by the augmented weights in w, then we can sum
those incoming weighted inputs into a factor, D, which represents the net activity coming
into the neuron. If that factor is positive we can provide a high output of +1 (i.e. the
“neuron fires”) or if the factor is negative we can provide a low output of -1 (i.e. the
“neuron does not fire”). We can relate this process of firing or not to the existence of a flaw
of class c,or c,. A neural network can be a large collection of interconnected “neurons” of
this type (or other types). If we have a way to learn all the discriminants in such a network
(called the network weights) then we have a powerful way to do pattern recognition on
complex problems as well as perform other complex tasks.

We will talk more about neural nets later and describe the way we can learn to obtain the
network weights but now let us describe a learning algorithm for our simple linearly
separable classification problem.
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Two Category Training Procedure

Given an extended weight vector w £ (wl,wz,..., w”,b) 1 || || ||
and an extended feature vector ~ x = (x,%5,.000%,,—1)
the following steps define a two class error correction algorithm

Definition: Let wy be the weights associated with x, , " feature training
vectors" for cases where the class of each x, is known

(1) let w, = (0, 0,...,0) (actually, w, can be arbitrary)

(2) Given wy, the following case rules apply
casel: x, ec/(class c))
a.if x,-w,20,w,, =w,

b.if x,-w, <0,w,, =w, +1x,

case2: X, €c,(classc,)
a.if x,-w, <0,w,,, =w,

b.if x,-w,>0,w, , =w,—Ax, Wwhere A>0

We can define a two category (two class) learning procedure for a problem where the two
classes can be separated in a feature space x by a hyperplane. Such a problem is called a
linearly separable classification problem. We start with a given set of weights which can all
be zero, for example, and a set of examples (NDE tests) where we have a set of features
extracted from a known flaw type. We can call these examples the feature training vectors
and define a learning procedure, as shown above, where we change the weights depending
on the feature vector values and the type of class present. The procedure shown above is
relatively simple where we either leave the weights unchanged or change them by either
adding or subtracting the feature vector values multiplied by positive constant we choose.
It can be shown this learning procedure must eventually stop and produce a set of weights
which separates the two classes.
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Two Category Learning Theorem | |
! | l

If ¢, and ¢, are linearly separable and the two class training procedure
is used to define w,, then there exists an integer =1 such that w,
linearly separates ¢, and c, and hence w,,, = w, for all positive k.

Ref: Hunt, E.B., Artificial Intelligence, Academic Press, 1975.

Remark: A can be a constant or can take on particular forms. For example:
(0<a<2)

can be used and the algorithm still converges. This often speeds up the
convergence

Ref: Nilsson, N, Learning Machines, McGraw Hill, 1965.

Here is a statement of the so-called two category learning theorem. As you can see, it has
been known for some time. It was not until the 1980s that more powerful learning
methods became readily available for neural networks, which allowed their use in
problems much more complex and practical than the linearly separable case discussed
here.



Example: Determine if an ultrasonic signal is from a crack or a volumetric
flaw based on the following two features: | | |
1 1

x, =" has flashpoints" 1 ="yes", -1 ="no"
X, ="has negative leading edge pulse" 1 ="yes", -1 ="no"

volumetric volumetric
crack (low impedance) (high impeance)
X, 1 1 p
X, 1 1 p
X,
volumetric )
(lowimped.) @ 1.0 A crac
| [ ¥
1
-1.0 1.0
volumetric 10
(high imped.) ~ 'V [

Now, let’s show a simple example of our two class flaw classification problem where we
use as two features the existence of flashpoints and a negative leading edge pulses (we
could also use the positive leading edge pulse feature considered previously, so this change
is not important). We see in the feature space these distinguishing features can indeed be
separated by a line (in fact, many lines) which we could obtain by inspection. However, we
want to use our two category learning theorem to choose such a line, so we can see the
learning process in action.
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. [ A |I|||I|

D<0

D=wx +w,x, =0

For simplicity, we will take b = 0, . = 1 so the learning procedure is

1. Give an training example ( X, , X, )

2.1f D>0 ask"isitacrack" (Y orN)
If D<(0 ask"isitvolumetric" (Y or N)

3.Iferror (N)and D>0 W, =W, —X,
Iferror(N)and D <( W, =W, +X,

To make things very simple we will choose b=0 and A= 0, but these choices are not
necessary. Shown is the learning procedure for this case.



Suppose for this case we have the following training set: | ||
J1HIL

X;=-1 ,% =1 (vol)
x;=1 ,x,=1 crack
X1=-1, %X, =-1(vol)

prOD=

Training example 1: vol

X, D=0
Xy =1,%x,=1
D =0 (since wy =w, =0 initially)
— "isitacrack" —> N o —
D>0
w=0-(x)=1 : X,
_ _ D<0
w,=0—(x,)=-1 W

Now, suppose we have a set of examples that we use to learn a set of appropriate weights.

Shown are the first three cases in this training set and how the weights are changed when
we present the first training example to the learning procedure. The separating line that is
generated is shown. Note that we have not yet separated the two cases because the high
impedance volumetric flaw must give us D<0, not D<0 as seen here.
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Training example 2: crack

o D=0 “
Xy =1, %=1 X, lI II
D=(M(1)+(-1)(1)=0
— "isitacrack" —> Y o —
D>0
no change
w =1 X,
D<0
w, =-1 | w

Training example 3: vol

1 1 D=0
X1 = , X2 = -
D= (1)(-1) + (-1)(-1) = 0 =

— "isitacrack" = N O - A

D>0
w=1-x =2 | ! X,
w,=—1-x,=0 D<0 w
o |
no further changes

Now, we present the second and third training examples. In the second example there is no
change to the weights but in the third case the line now completely separates the two
classes. Further training examples will not make any changes to this line, so we have
learned the discriminants.



Note that this classifier can also handle situations other than which it is | ||
trained on. This "generalization" ability is a valuable property of neural nets. -I Iu

For example, suppose we let

x; = 1 "definitely has flash points"
0.5 "probably has flash points"
0  "don't know"
-0.5 "probably does not have flash points"
-1 "definitely does not have flash point"

similarly for x,

Now suppose we give our trained system an example it hasn't seen
before such as a crack where

x, = 0.5 " probably has flash points"
X, = 0.5 " probably has a negative leading edge pulse"

D =(2)(0.5)+(0)0.5)=1=0
— "isitacrack® — Y (which is correct)

An important feature of our classifier is that it can handle situations other than just those it
is trained on. For example, suppose we give the x-values something other than the +1 and -
1 values used in training. In the example shown we see the classifier still works. This ability

to generalize to cases not seen in the training samples is what makes neural networks such
powerful tools.
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Here are some references on statistical pattern recognition. Later, we will give some
references on neural networks.
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Neural Networks

Neural networks have become an important and powerful tool for analyzing signals so they
are a valuable concept that can be used to evaluate the results of ultrasonic NDE
inspections.



Learning Objectives
Characteristics of neural nets
Supervised learning — Back-propagation

Probabilistic nets

In the following slides we will give a very brief introduction to neural networks. We will
discuss only two network types — a feedforward net trained with the back-propagation
learning algorithm, and a probabilistic net. We made these two choices since the back-prop
net is perhaps the most widely used network to describe the working of neural nets and
the probabilistic net is closely related to the probabilistic ideas we discussed in the pattern

recognition presentation.



oo

What is a Neural Network?

According to the DARPA Neural Network Study
(1988, AFCEA International Press, p. 60):

... a neural network is a system composed of many simple

processing elements operating in parallel whose function is
determined by network structure, connection strengths, and
the processing performed at computing elements or nodes.

Here is a formal definition of a neural network. Generally speaking, a neural net has many
interconnected elements which work in unison to accomplish a particular task.



Characteristics of Neural Nets %

The good news: They exhibit some brain-like
behaviors that are difficult to program directly like:
learning

association

categorization

generalization

feature extraction

optimization

noise immunity

The bad news: neural nets are:
black boxes
difficult to train in some cases

Neural nets have some very good characteristics but also some bad ones as well. The
power exhibited by neural nets generally far outweigh their negative aspects.



There is a wide range of neural network architectures:

Multi-Layer Perceptron (Back-Prop Nets) 1974-85
Neocognitron 1978-84

Adaptive Resonance Theory (ART) 1976-86
Sef-Organizing Map 1982

Hopfield 1982

Bi-directional Associative Memory 1985
Boltzmann/Cauchy Machine 1985
Counterpropagation 1986

Radial Basis Function 1988

Probabilistic Neural Network 1988

General Regression Neural Network 1991
Support Vector Machine 1995

Here we show a number of different neural nets developed in the 80s and 90s. We will
only describe back-propagation nets and probabilistic nets, as mentioned earlier.



gl
Our single "neuron" model %

b
AN
X, 0= 1 D=>0 classc,
w.
: -1 D<0 classc,

Here is the model of a single “neuron” that implements the linearly separable classifier we
discussed in the pattern recognition notes.



and bias

input features

Basic Neuron Model

D, = Z WX, 7 (Dj )

threshold activation fupétion

jth neuron

Here is a more genera

|ll

neuron” model that takes a set of weighted inputs, sums those

inputs, and then applies an “activation function” to that sum to determine an output.



input layer %

\ output
—~O0—0O—

)
o N

hidden layer
output
N\
% Q/C}

hidden
& layer 2 @@
Q@ output
layer 1

We saw that with a single neuron we can generate a linearly separable classifier. By adding
one or more layers we can generate a network of neurons that can handle more complex
problems since the decision surfaces (discriminants) are not limited to a single hyperplane.
These decision surfaces are defined by the weights in the connections between neurons so
a key aspect is how we learn to choose those weights.



gl
Most neural nets use a smooth activation function ’%&
>

input features
and bias

a sigmoidal function f(z) = % and its f’ — f(l — f)

1+e derivative

Neural nets usually use a smooth activation function that we will see facilitates the
determination of the network weights. A sigmoidal function is a popular choice.



Major question — How do we adjust the weights to learn the ’%

mapping between inputs and outputs?

Answer: Use the back propagation algorithm, which is just an
application of the chain rule of differential calculus.

Consider this simple example

The crucial question is how to determine the weights. A procedure, called the back
propagation algorithm, allows us to answer that question. To see how back propagation
works, consider a simple case of a set of three neurons connected together with unknown
weights, w, u.



To learn the weights we can try to minimize the output error ’§ %E

i.e. , we start with an initial guess for the weights and then present an example
of known input x and output value d (training example). Then we form up the

error 1 )
E==(d-y)
2
and adjust the weights to reduce this error. Since
OE OE
AE =—Au+—A~Aw
ou ow

we canmake AF <()

by choosing 5_E = —JAu
ou A ... constant
ok =—-AAw
ow

To determine the weights we take an example where an input x determines a known
output d and try to minimize the output error of the network on this example. We can
make the error always smaller by making the derivatives of the error function with respect
to the weights proportional to the change of weights themselves as shown.



This leads to the adjustment rule ’%
»l

u(m+1):u(m)—,u% ) | '
... learning
w(m-i—l):w(m)—yajfm) rate

So we now need to find these derivatives of E with respect to the
weights.

This can be written as a rule for changing the weights in terms of the derivatives of the
error.



B OSOSOSIE S
yzf(uh)
hzf(wx)

y=1(uf(wx))
=F (u,w,x)

For the derivatives involving the weight between the hidden layer and
output layer

0E _oft., vl o[l 12

ou(m) =5{5(d—y) }:5[5@’—)/) }a_z
—(y-d) £ (wh)h=(y~d) y(1-y)h
:(y—d)y(l—y)hL(m),w(m)

Since the relationship between the network output and input is just a composite function,
we can obtain the error derivatives explicitly as shown here for one error derivative, 0E/du
(the expression for the derivative shown earlier for the sigmoidal function is used here).
Choosing a smooth function like the sigmoid allows us to compute these derivatives.



Similarly for the weight between the hidden layer and input layer %

Here is the other error derivative. Thus, we are really just applying the chain rule of
Calculus in this backpropagation algorithm.



Thus, the training algorithm is: %
»l

1. Initialize weights to small random values

2. Using a training set of known pairs of inputs and outputs (x, d) change the
weights according to

w(m+1)=W(m)—,u(y—d)y(l—y)h(l—h)ux
u(m+1):u(m)—,u(y—d)y(l—y)h

with y=f(uh) until E—l(d— )2 o o |
h=f(wx) =3 y ecomes sufficiently sma

u(m),w(m)

u(m),w(m)

T iteration

stop
This is an example of supervised learning

Thus, we now know how to use a set of known examples of input/output combinations
(called a training set) to change the weights to minimize the output error. Once the error is

small enough, we can say the neural network has been trained. This is called supervised
learning.



One of the most popular neural nets is a feed forward net with %

one hidden layer trained by the back propagation algorithm

hidden layer

N\
()
* O outputs

Y

\\\A\"“\

It can be shown that in principle this type of network can
represent an arbitrary input-output mapping or solve an arbitrary
classification problem

Now, consider a feed forward network with a hidden layer.



Back propagation algorithm (three layer feed forward network) %

X — Yk
N\ —
le. ukj
P input M hidden K output
nodes nodes nodes

ug" :u,‘{’/.ld —,u(yk —dk)yk (l—yk)hj (k:I,...,K j=1,...,M)

K
wi =W =i (vo=d )y (1= v )up b (1-h,)x, (j=L...M i=1,..P)

Ye=——~F7 N
with 1+exp(—2u:j’dth

We can apply the same backpropagation algorithm to train this neural network.
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Some issues associated with this "back-prop" network %

design of training, testing and validation data sets
determination of the network structure

selection of the learning rate ()

problems with under or over-training

PN~

E testing set

/

training set

‘ ‘ iterations

stop

. over
learning

trained

Here are some of the questions that occur with such training of such “back-prop neural
nets”. For example, how do we choose sets of training examples and examples to validate
the performance? Also, how do we choose the actual network architecture (number of
nodes, layers)? There is a learning rate, |1, in the backpropagation algorithm, that also
must be chosen. Also, we need to determine when to stop the training since we may make
the error of the network on the training examples be very small, but a smaller training error
does not always mean a better performance of the network on other examples, as we may
simply have trained the network to only recognize the testing examples very well.
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Here are some issues of preprocessing the input data (training examples) that might be

useful.

Some important issues for neural networks:
Pre-processing the data to provide:

* reduction of data dimensionality
* noise filtering or suppression
» enhancement
strengthening of relevant features
centering data within a sensory aperture or window
scanning a window over the data
einvariance in the measurement space to:
translations
rotations
scale changes
distortion
« data preparation
analog to digital conversion
data scaling
data normalization
thresholding
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P
Some examples of pre-processing include %
»l

1-D and 2-D FFTs

Filtering

Convolution Kernels

Correlation Masks or Template Matching

Autocorrelation

Edge Detection and Enhancement

Morphological Image Processing

Fourier Descriptors

Walsh, Hadamard, Cosine, Hartley, Hotelling, Hough Transforms
Higher order spectra

Homomorphic Transformations (e.g. Cepstrums)
Time-Frequency transforms ( Wavelet, Wigner-Ville, Zak)
Linear Predictive Coding

Principal Component Analysis

Independent Component Analysis

Geometric Moments

Thresholding

Data Sampling

Scanning

Here are some explicit pre-processing steps. A feedforward neural network trained with the
back propagation algorithm used in conjunction with such steps can be a very powerful
tool.



Probabilistic Neural Network (PNN) ’é%;
»l
Basic idea:

Use training samples themselves to obtain a representation of the

probability distributions for each class and then use Bayes decision
rule to make a classification

Basis functions usually chosen are Gaussians:

f(x) p/z Zexp w

( o’M, 4 207

i...class number (i=1,2,...,N)

J- tralnlng pattern number

X; ... j th training pattern from i th class
M, ... number of training vectors in class i
p .. dimension of vector x

f, (x) = sum of Gaussians centered at each training pattern from the ith
class to represent the probability density of that class

o ... smoothing factor (standard deviation, width of the Gaussians)

Here is another neural network, called a probabilistic neural net, that uses the samples
(training examples) directly to define the probability distributions for a set of output classes

and then applies Bayes decision rule to make a classification. Gaussian functions are often
used, as shown here.



probability density function for class i %

X,

If we normalize the vectors x and x; to unit length and assume the
number of training samples from each class are in proportion to their
a priori probability of occurrence then we can take as our decision

functions

Here are the decision functions that can be defined from the training a samples.
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M, x.)=1 '%{
gi(x):Mjf;(x):;o-pZexp % ”

(27[)17/2
Since we decide for a given class & based on
g (x)>g(x) forall i=12,.,N (i#k)

the common constant outside the sum makes no difference and we can
take

2
o

o (5) = Sexp| 20!
=

This can now be easily implemented in a neural network form

Then we simply choose the largest decision function to make a classification decision.
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weights are

just elements—
of the training
patterns

Probabilistic Neural Network

This whole process can be structures as a neural network where the weights are now

simply the known elements of the training examples.
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Characteristics of the PNN %

1. no training, weights are just the training vectors themselves
2. only parameter that needs to be found is the smoothing factor, ¢
3. outputs are representative of probabilities of each class directly

4. the decision surfaces are guaranteed to approach the Bayes optimal
boundaries as the number of training samples grows

5. "outliers" are tolerated

6. sparse samples are adequate for good network performance

7. can update the network as new training samples become available
8. needs to store all the training samples, requiring a large memory

9. testing can be slower than with other nets

Here are some of the properties of the probabilistic neural network. We see that it is a nice
illustration of the probabilistic pattern recognition ideas we presented earlier in a neural
network form.
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Here are a few references that contain more information on back-prop nets and
probabilistic nets, as well as others.
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